Answer:
The smallest possible length is 0.83m
Step-by-step explanation:
Given

Required
The smallest length of the tank
Since the tank is cubical, then the volume is:

This gives:

Express as 


Take cube roots of both sides

Rewrite as:

Approximate

The shape of the room is not a square.
Pythagorean Theorem: 17^2+17^2= 578, square root 578 and you'll get 24.04.
The length of the diagonal of the floor of the room in the plan should have been 24.04 in order to be a square.
Answer:
F. x = 7
Step-by-step explanation:
there are 10 boxes on the right and it is equal to the side on the left, so you just subtract 10 and 3 to get 7.
You forgot to include the given line.
We need the given line to find the slope. The slope of parallel lines are equal. So, the slope of the line of the equation you are looking for is the same slope of the given line.
I can explain you the procedure to help you to find the desired equation:
1) Slope
Remember that the slope-intercept equation form is y = mx + b where m is the slope and b is thye y-intercept.
If you clear y in every equation you get:
a) y = (3/4)x + 17/4 => slope = 3/4
b) y = (3/4)x + 20/4 = (3/4)x + 5 => slope = 3/4
c) y = -(4/3)x - 2/3 => slope = -4/3
d) y = (-4/3)x - 6/3 = (-4/3)x - 2 => slope = -4/3
So, you just have to compare the slope of the given line with the above slopes to see which equations are candidates.
2) Point (-3,2)
You must verify which equations pass through the point (-3,2).
a) 3x - 4y = - 17
3(-3) - 4(2) = -17
- 9 - 8 = - 17
- 17 = - 17 => it is candidate
b) 3x - 4y = - 20
- 17 ≠ - 20 => it is not candidate
c) 4x + 3y = - 2
4(-3) + 3(2) = - 2
-12 + 6 = - 2
-6 ≠ -2 => it is not candidate
d) 4x + 3y = - 6
-6 = - 6 => it is candidate
3) So, the point (-3,2) permits to select two candidates
3x - 4y = - 17, and 4x + 3y = -6.
4) Yet you have to find the slope of the given equation, if it is 3/4 the solutions is the equation 3x - 4y = -17; if it is -4/3 the solution is the equation 4x + 3y = -6.