1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew-mc [135]
2 years ago
14

Kristen has two identical sized cubes, one is lead (Pb) and one is copper (Cu). Kristen is determining the density of each cube.

Which property will be the same in each cube?
Physics
1 answer:
natta225 [31]2 years ago
3 0

Answer:

volume

Explanation:

Identical size means volume will be the same in each calculation of

density =   mass / <u>volume</u>

You might be interested in
What occurs when light changes direction after colliding with particles of matter
Slav-nsk [51]
Scattering occurs when light changes direction after colliding with particles of matter.
7 0
3 years ago
What factor might be contributing to climate change
kirza4 [7]

Geological records stretching back millions of years indicate a number of large variations in Earth’s past climate. These have been caused by many natural factors, including changes in the sun, volcanoes, Earth’s orbit and CO2 levels.

However, comprehensive assessment by scientists shows that it is extremely likely that human activity has been the dominant cause of warming since the mid-20th Century.

6 0
3 years ago
A narrow beam of light from a laser travels through air (n = 1.00) and strikes the surface of the water (n = 1.33) in a lake at
Natalka [10]

Answer:

A) d = 11.8m

B) d = 4.293 m

Explanation:

A) We are told that the angle of incidence;θ_i = 70°.

Now, if refraction doesn't occur, the angle of the light continues to be 70° in the water relative to the normal. Thus;

tan 70° = d/4.3m

Where d is the distance from point B at which the laser beam would strike the lakebottom.

So,d = 4.3*tan70

d = 11.8m

B) Since the light is moving from air (n1=1.00) to water (n2=1.33), we can use Snell's law to find the angle of refraction(θ_r)

So,

n1*sinθ_i = n2*sinθ_r

Thus; sinθ_r = (n1*sinθ_i)/n2

sinθ_r = (1 * sin70)/1.33

sinθ_r = 0.7065

θ_r = sin^(-1)0.7065

θ_r = 44.95°

Thus; xonsidering refraction, distance from point B at which the laser beam strikes the lake-bottom is calculated from;

d = 4.3 tan44.95

d = 4.293 m

4 0
3 years ago
How do you calculate the net force, i need a full explanation PLEASE
Lina20 [59]

Answer:

Once you have drawn the free-body diagram, you can use vector addition to find the net force acting on the object. We will consider three cases as we explore this idea:

Case 1: All forces lie on the same line.

If all of the forces lie on the same line (pointing left and right only, or up and down only, for example), determining the net force is as straightforward as adding the magnitudes of the forces in the positive direction, and subtracting off the magnitudes of the forces in the negative direction. (If two forces are equal and opposite, as is the case with the book resting on the table, the net force = 0)

Example: Consider a 1-kg ball falling due to gravity, experiencing an air resistance force of 5 N. There is a downward force on it due to gravity of 1 kg × 9.8 m/s2 = 9.8 N, and an upward force of 5 N. If we use the convention that up is positive, then the net force is 5 N - 9.8 N = -4.8 N, indicating a net force of 4.8 N in the downward direction.

Case 2: All forces lie on perpendicular axes and add to 0 along one axis.

In this case, due to forces adding to 0 in one direction, we only need to focus on the perpendicular direction when determining the net force. (Though knowledge that the forces in the first direction add to 0 can sometimes give us information about the forces in the perpendicular direction, such as when determining frictional forces in terms of the normal force magnitude.)

Example: A 0.25-kg toy car is pushed across the floor with a 3-N force acting to the right. A 2-N force of friction acts to oppose this motion. Note that gravity also acts downward on this car with a force of 0.25 kg × 9.8 m/s2= 2.45 N, and a normal force acts upward, also with 2.45 N. (How do we know this? Because there is no change in motion in the vertical direction as the car is pushed across the floor, hence the net force in the vertical direction must be 0.) This makes everything simplify to the one-dimensional case because the only forces that don’t cancel out are all along one direction. The net force on the car is then 3 N - 2 N = 1 N to the right.

Case 3: All forces are not confined to a line and do not lie on perpendicular axes.

If we know what direction the acceleration will be in, we will choose a coordinate system where that direction lies on the positive x-axis or the positive y-axis. From there, we break each force vector into x- and y-components. Since motion in one direction is constant, the sum of the forces in that direction must be 0. The forces in the other direction are then the only contributors to the net force and this case has reduced to Case 2.

If we do not know what direction the acceleration will be in, we can choose any Cartesian coordinate system, though it is usually most convenient to choose one in which one or more of the forces lie on an axis. Break each force vector into x- and y-components. Determine the net force in the x direction and the net force in the y direction separately. The result gives the x- and y-coordinates of the net force.

Example: A 0.25-kg car rolls without friction down a 30-degree incline due to gravity.

We will use a coordinate system aligned with the ramp as shown. The free-body diagram consists of gravity acting straight down and the normal force acting perpendicular to the surface.

We must break the gravitational force in to x- and y-components, which gives:

F_{gx} = F_g\sin(\theta)\\ F_{gy} = F_g\cos(\theta)F

gx

​

=F

g

​

sin(θ)

F

gy

​

=F

g

​

cos(θ)

Since motion in the y direction is constant, we know that the net force in the y direction must be 0:

F_N - F_{gy} = 0F

N

​

−F

gy

​

=0

(Note: This equation allows us to determine the magnitude of the normal force.)

In the x direction, the only force is Fgx, hence:

F_{net} = F_{gx} = F_g\sin(\theta) = mg\sin(\theta) = 0.25\times9.8\times\sin(30) = 1.23 \text{ N}F

net

​

=F

gx

​

=F

g

​

sin(θ)=mgsin(θ)=0.25×9.8×sin(30)=1.23 N

7 0
3 years ago
In which one of the following circumstances could mechanical energy not possibly be conserved, even if friction and air resistan
qwelly [4]

Answer:

A car moves up a hill at a constant velocity

Explanation:

Since the velocity is constant, the speed is also constant and so is the kinetic energy. However, total mechanical energy is sum of gravitational potential energy and kinetic energy, and the car is moving up the hill so its potential energy rises.

Thus, in the circumstances described the mechanical energy cannot be conserved.

The correct answer is A car moving up the hill with constant velocity.

5 0
3 years ago
Other questions:
  • What is the kinetic energy of a 50-kg child running to catch the school bus at
    5·2 answers
  • How do we know that white light is composed of a rainbow of colors?
    5·1 answer
  • Which happens to the magnetic field of a wire when you change the direction of the current in the wire? It becomes stronger. It
    11·1 answer
  • If the current and the resistance in a circuit both double, what will happen to the voltage?
    7·1 answer
  • A car moves at a constant speed of 10 m/s. If the car doesn't accelerate during the next 40 s how far will it go?
    9·1 answer
  • A solar collector is a device that absorbs ___________from the sun ?
    14·2 answers
  • Which atomic model was proposed as a result of j. J. Thomson’s work?
    13·1 answer
  • An automobile tire having a temperature of 3.4 ◦C (a cold tire on a cold day) is filled to a gauge pressure of 24 lb/in2 . What
    9·2 answers
  • Hi all, can u please help me in this. I would very appreciate it :)
    5·1 answer
  • A wire that is 1.0 m long with a mass of 90 g is under a tension of 710 N. When a transverse wave travels on the wire, its wavel
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!