A). Both the energy and the wave travel in the same direction.
If they didn't, they'd wind up in different cities almost instantly.
Answer:
X: Low potential energy
Y: High Potential energy
Z: Flow of electrons
Explanation: From the figure, it's obvious that Z is the flow of electrons, as shown by the arrow demonstrating the direction of the flow. Because of this, we can easily nullify choices B and C.
From the figure, we can notice that Y has more energy stored and X has a lot less, so you can conclude that Y has high potential energy while X has low potential energy.
The magnitude<span> of a </span>velocity<span> vector is </span>called<span> speed. Supposethat a wind is blowing in from the direction at a speed of 50 km/h. (This meansthat the direction from which the wind blows is west of the northerly direction.) Apilot is steering a plane in the direction at an airspeed (speed in still air) of250 km/h
</span>
Answer:
v_squid = - 2,286 m / s
Explanation:
This exercise can be solved using conservation of the moment, the system is made up of the squid plus the water inside, therefore the force to expel the water is an internal force and the moment is conserved.
Initial moment. Before expelling the water
p₀ = 0
the squid is at rest
Final moment. After expelling the water
= M V_squid + m v_water
p₀ = p_{f}
0 = M V_squid + m v_water
c_squid = -m v_water / M
The mass of the squid without water is
M = 9 -2 = 7 kg
let's calculate
v_squid = 2 8/7
v_squid = - 2,286 m / s
The negative sign indicates that the squid is moving in the opposite direction of the water
Answer:
The equation of simple harmonic motion is 
Explanation:
Given that,
Amplitude = 5 inches
Frequency 
As per the question initial displacement is zero at t = 0 for sine curve.
The displacement is zero so the phase difference will be zero.
We know that,
The general equation of simple harmonic motion

Where, A = amplitude
= angular frequency
= phase shift
We need to calculate the time period
Using formula of frequency


Put the value into the formula


We need to calculate the angular frequency
Using formula of angular frequency


Put the value into the general equation

Hence, The equation of simple harmonic motion is 