Answer:0.061
Explanation:
Given

Temperature of soup 
heat capacity of soup 
Here Temperature of soup is constantly decreasing
suppose T is the temperature of soup at any instant
efficiency is given by



integrating From
to 


![W=c_v\left [ T-T_C\ln T\right ]_{T_H}^{T_C}](https://tex.z-dn.net/?f=W%3Dc_v%5Cleft%20%5B%20T-T_C%5Cln%20T%5Cright%20%5D_%7BT_H%7D%5E%7BT_C%7D)
![W=c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]](https://tex.z-dn.net/?f=W%3Dc_v%5Cleft%20%5B%20%5Cleft%20%28%20T_C-T_H%5Cright%20%29-T_C%5Cleft%20%28%20%5Cln%20%5Cfrac%7BT_C%7D%7BT_H%7D%5Cright%20%29%5Cright%20%5D)
Now heat lost by soup is given by

Fraction of the total heat that is lost by the soup can be turned is given by

![=\frac{c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]}{c_v(T_C-T_H)}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bc_v%5Cleft%20%5B%20%5Cleft%20%28%20T_C-T_H%5Cright%20%29-T_C%5Cleft%20%28%20%5Cln%20%5Cfrac%7BT_C%7D%7BT_H%7D%5Cright%20%29%5Cright%20%5D%7D%7Bc_v%28T_C-T_H%29%7D)




Answer:
Given:
radius of the coil, R = 6 cm = 0.06 m
current in the coil, I = 2.65 A
Magnetic field at the center, B =
Solution:
To find the number of turns, N, we use the given formula:

Therefore,

N = 22.74 = 23 turns (approx)
Answer:
Net forces which pushes the window is 30342.78 N.
Explanation:
Given:
Dimension of the office window.
Length of the window =
m
Width of the window =
m
Area of the window = 
Difference in air pressure = Inside pressure - Outside pressure
=
atm =
atm
Conversion of the pressure in its SI unit.
⇒
atm =
Pa
⇒
atm =
Pa
We have to find the net force.
We know,
⇒ Pressure = Force/Area
⇒ 
⇒ 
⇒ Plugging the values.
⇒
⇒
Newton (N)
So,
The net forces which pushes the window is 30342.78 N.
Explanation:
Centripetal acceleration ac is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. It is perpendicular to the linear velocity v and has the magnitude ac=v2r;ac=rω2 a c = v 2 r ; a c = r ω 2 .
The answer to this question is dropping it on a hard surface.