The distance is the total distance she walked which is 16 meters adding the 6 meters to the corner and 10 meters to her friend's apartment. Her displacement is the distance from her original starting point so you set up a triangle with side lengths of 6 and 10 and solve for the hypotenuse which gives you a displacement of 11.66 meters.
Answer:
3.2N
Explanation:
Given parameters:
Mass of block = 1.5kg
Coefficient of kinetic friction = 0.6
Force of pull on block = 12N
Unknown:
Net force on the block = ?
Solution:
Frictional force is a force that opposes motion:
Net force = Force of pull - Frictional force
Frictional force = umg
u is coefficient of kinetic friction
m is the mass
g is the acceleration due to gravity
Frictional force = 0.6 x 1.5 x 9.8 = 8.8N
Net force = 12N - 8.8N = 3.2N
Q before connected = Q after connected C1V1+C2V2 = (C1+C2) V
C1= 3×10^-6 F
V1= 480v
C2= 4×10^-6 F
V2= 500v
(3×10^-6)×(480) + (4×10^-6)×(500) = (3×10^-6 + 4×10^-6) × V
Simplifying the above, we get:
( 1440× 10^-6) + (2000 ×10^-6) = (7 × 10^-6) × V.
Further simplified as:
3440 × 10^-6 = 7 × 10^-6 × V
Making V the subject
V = 491.43volts
Therefore the potential difference across each capacitor is 491.43v
As the speed of wave decreases, the wavelength of the wave decreases.
<h3>Refraction</h3>
We know that as a wave travels from one medium to another its speed decreases depending on if the first medium is less dense than the second medium or increases depending on if the first medium is more dense than the second medium. This is known as refraction
Now, we know that the speed of a wave v = fλ where
- f = frequency and
- λ = wavelength. Since f is constant, v ∝ λ.
The ratio of the speed in medium one to speed in medium two is called the refractive index of medium 1 to 2.
<h3>Explaining the diagram</h3>
From the diagram, we see that the wavelength in medium 1 is longer than that in medium 2. Since wavelength and speed are proportional, so the speed in medium 1 is also greater than the speed in medium 2.
So, As the speed of wave decreases, the wavelength of the wave decreases.
Learn more about refraction here:
brainly.com/question/25758484