This question involves the concepts of echo, ultrasonic images, ultrasonic sound waves.
The process of ultrasonic images uses the "echo" property of the sound waves.
Echo is the property of the sound wave by the virtue of which the sound wave reflects back to the source of the sound after hitting a surface or an object.
Ultrasonic images are obtained from inside organs of our body. This process involves the use of ultrasonic sound waves that have a frequency greater than 20,000 Hz. These sound waves are out of the range of audible sound by the human ear. When these ultrasonic sound waves are sent in form of pulses into the human body by the use of probes, they reflect back from the tissues of different organs to the probe. The probe then records the reflection properties of these sound waves and displays them in form of an image, known as ultrasonic images.
Learn more about echo here:
brainly.com/question/14335186?referrer=searchResults
The attached picture shows the process of ultrasonic imaging.
Answer: 6067.5 N
Explanation:
Work = Change in Energy. To start, all of the energy is kinetic energy, so find the total KE using: KE = 1/2(m)(v^2). Plug in 1980 kg for m and 15.5 m/s for v and get KE = 237847.5 J.
Now, plug this in for work: Work = Force * Distance; so, divide work by distance to get 6067.5 N.
Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (0.314 kg) x (164 m/s²)
= 51.5 newtons
(about 11.6 pounds).
Notice that the ball is only accelerating while it's in contact with the racket. The instant the ball loses contact with the racket, it stops accelerating, and sails off in a straight line at whatever speed it had when it left the strings.
~ I hope this helped, and I would appreciate Brainliest. ♡ ~ ( I request this to all the lengthy answers I give ! )
Answer:
the object's mass is 50 kg
Explanation:
We use Newton's second law to solve for the mass:
F = m * a , then m = F / a
In our case, the acceleration is the gravitational acceleration on the planet, and the force is the weight of the object on the planet. So we get:
m = w / a = 650 N / 13 m/s^2 = 50 kg
Then, the object's mass is 50 kg.