Answer:
see below the first three problems
Step-by-step explanation:
f(g(-2))
First, find g(-2) using function g(x). Then use that value as input for function f(x).
g(x) = -2x + 1
g(-2) = -2(-2) + 1
g(-2) = 5
f(x) = 5x
f(5) = 5(5)
f(5) = 25
f(g(-2)) = 25
g(h(3))
First, find h(3) using function h(x). Then use that value as input for function g(x).
h(x) = x^2 + 6x + 8
h(3) = 3^2 + 6(3) + 8 = 9 + 18 + 8
h(3) = 35
g(x) = -2x + 1
g(35) = -2(35) + 1 = -70 + 1
g(35) = -69
g(h(3)) = -69
f(g(3a))
First, find g(3a) using function g(x). Then use that value as input for function f(x).
g(x) = -2x + 1
g(3a) = -2(3a) + 1
g(3a) = -6a + 1
f(x) = 5x
f(-6a + 1) = 5(-6a + 1)
f(-6a + 1) = -30a + 5
f(g(3a)) = -30a + 5
Answer:
yes.
Step-by-step explanation:
Answer:
284
Step-by-step explanation:
You have to start out multiplying the (parentheses), then the [brackets], then the {curly brackets}. After you're done with those you would add 2.
Area = (x - 5)(x – 7)
Area = x(x - 7) - 5(x - 7)
Area = x^2 -7x -5x + 35
Area = x^2 -12x + 35
algebraic expression that represents its area: x^2 -12x + 35
x^2 - 12x + 35 = 195
x^2 - 12x + 35 - 195 = 0
x^2 - 12x - 160 = 0
x^2 - 8x - 20x - 160 = 0
x (x + 8) - 20 (x + 8) = 0
(x + 8) (x - 20) = 0
(x + 8) = 0
(x - 20) = 0
x = - 8 (not a solution)
x = 20
hence,
length = x - 5
length = 20 - 5
length = 15 m
width = x - 7
width = 20 - 7
width = 13 m
perimeter = 2(13) + 2(15)
perimeter = 26 + 30
perimeter = 56 m²