1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
german
2 years ago
8

Three small objects are located in the x-y plane as shown in the figure. The objects have the following masses: mA = 1.09 kg, mB

= 2.83 kg, mC = 3.39 kg.
What is the moment of inertia of this set of objects with respect to the axis perpendicular to the the x-y plane passing through location x = 4.00 m and y = 3.00 m? The objects are small in size, their moments of inertia about their own centers of mass are negligibly small.

Physics
1 answer:
aliina [53]2 years ago
3 0

The moment of inertia of this set of objects with respect to the axis perpendicular to the the x-y plane passing through location x = 4.00 m and y = 3.00 m is 144.97 Kg.m^2.

<h3>What is moment of inertia?</h3>

The moment of inertia is the amount of rotation obtained  by an object when it is in state of motion or rest.

Three small objects are located in the x-y plane as shown in the figure. The objects have the following masses: mA = 1.09 kg, mB = 2.83 kg, mC = 3.39 kg.

The coordinates  of Ball A :(2,1) Ball B :(8,2) and Ball C: (5,8) and axis is at (4,3)

Here, for the moment of inertia of each ball

For ball A

IA = 1.09 x ((4 - 2)^2 + (3-1)^2)

IA = 8.72 Kg.m^2

for the ball B

IB = 2.83 * ((4 - 8)^2 + (3 - 2)^2)

IB = 48.11 Kg.m^2

for the ball C

IC = 3.39 * ((4 - 5)^2 + (3 - 8)^2)

IC = 88.14 Kg.m^2

Total moment of inertia = 8.72 + 48.11 +  88.14

Total moment of inertia = 144.97 Kg.m^2

Thus, the moment of inertia of this set of objects with respect to the axis perpendicular to the the x-y plane passing through location x = 4.00 m and y = 3.00 m is 144.97 Kg.m^2.

Learn more about moment of inertia.

brainly.com/question/15246709

#SPJ1

You might be interested in
Consider two conducting spheres with one having a larger radius than the other. Both spheres carry the same amount of excess cha
RSB [31]

Answer: Option (a) is the correct answer.

Explanation:

It is known that potential energy is the energy occupied by an object or substance due to its position is known as potential energy.

Therefore, more is the space occupied by an object more will be its position at a particular location. Hence, more will be its potential energy. On the other hand, smaller is the space occupied by an object, smaller will be the position holded by it.

Hence, smaller will be its potential energy.

Thus, we can conclude that for the given situation the statement, potential energy of the larger sphere is greater than that of the smaller sphere, is true.

6 0
4 years ago
Define projectile in your own .​
lorasvet [3.4K]

Answer:

a body which was thrown in space ,moves under the influence of gravity only is defined as projectile.

5 0
3 years ago
Read 2 more answers
A car accelerates from rest at 1.0 m/s2 for 20.0 second along a straight road. It then moves at a constant speed for half an hou
Whitepunk [10]

Total distance = 36500 m

The average velocity = 19.73 m/s

<h3>Further explanation</h3>

Given

vo=initial velocity=0(from rest)

a=acceleration= 1 m/s²

t₁ = 20 s

t₂ = 0.5 hr = 1800 s

t₃= 30 s

Required

Total distance

Solution

State 1 : acceleration

\tt d=vo.t+\dfrac{1}{2}at^2\\\\d=\dfrac{1}{2}\times 1\times 20^2\rightarrow vo=0\\\\d=200~m

\tt vt=vo+at\\\\vt=at\rightarrow vo=0\\\\vt=1\times 20\\\\vt=20~m/s

State 2 : constant speed

\tt d=v\times t\\\\d=20\times 1800\\\\d=36000~m

State 3 : deceleration

\tt vt=vo+at\rightarrow vt=0(stop)\\\\vo=-at\\\\20=-a.30~s\\\\a=-\dfrac{2}{3}m/s^2(negative=deceleration)

\tt d=vot+\dfrac{1}{2}at^2\\\\d=20.30-\dfrac{1}{2}.\dfrac{2}{3}.30^2\\\\d=300~m

Total distance : state 1+ state 2+state 3

\tt 200 + 36000 + 300=36500~m

the average velocity = total distance : total time

\tt avg~velocity=\dfrac{36500}{20~s+1800~s+30~s}=19.73~m/s

4 0
3 years ago
20. Consider a model steel bridge that is 1/100 the exact scale of the real bridge that is to be built. a. If the model bridge w
Veseljchak [2.6K]
The model bridge captures all the structural attributes of the real bridge, at a reduced scale.

Part a.
Note that volume is proportional to the cube of length. Therefore the actual bridge will have 100^3 = 10^6 times the mass of the model bridge.

Because the model bridge weighs 50 N, the real bridge weighs
(50 N)*10^6 = 50 MN.

Part b.
The model bridge matches the structural characteristics of the actual bridge.
Therefore the real bridge will not sag either.
6 0
4 years ago
How to convert 250 newton to pounds? It is likely to be difficult to move?
maxonik [38]
I have no idea I need the answer too
3 0
3 years ago
Other questions:
  • What does a negative moment of inertia mean?
    6·1 answer
  • The peak intensity of radiation from Mars is about 14,000 nm. In what spectral band is this? ultraviolet, radio waves, visible l
    6·2 answers
  • A planet has two moons with identical mass. Moon 1 is in a circular orbit of radius r. Moon 2 is in a circular orbit of radius 2
    11·1 answer
  • Differentiate convection and conduction class 7
    12·1 answer
  • A 40-cm-long tube has a 40-cm-long insert that can be pulled in and out. A vibrating tuning fork is held next to the tube. As th
    15·1 answer
  • The planet earth orbits around the sun and also spins around its own axis. True or False
    7·1 answer
  • How much heat is required to increase the temperature of 1 kg of steel from 21 °C to 22 °C?
    14·1 answer
  • What else is produced when sodium carbonate decomposes
    7·1 answer
  • A big kid pushes a little kid and the little kid falls backward. The big kid remains relatively stationary. What best explains t
    11·2 answers
  • If you want to delay a pulse of light in a laser experiment, you can send the light through a long coil of fiber optic cable. Li
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!