The Atwood's machine is in motion starting from rest, then Vf = Vo + a(t).
<span>Final Velocity is given as 6.7 m/s and the time is 1.9 s thus 6.7= 0+ a(1.9) </span>
<span>then a = 6.7/1.9 = 3.526 m/s². </span>
<span>The Atwood's Machine also has the formula d= distance = 1/2a(t²) </span>
<span>distance given is 6.365 m , then 6.365 = 1/2 a (1.9)², </span>
<span>a = 3.526 m/s² the same acceleration. </span>
<span>a= g(m1-m2) / m1+m2) </span>
<span>m1a + m2a = m1g - m2g </span>
<span>m1a - m1g = -m2g - m2a </span>
<span>3.526 m1 - 9.81 m1 = -9.81m2 - 3.526 m2 </span>
<span>-6.28 m1 = -13.34 m2 </span>
<span>0.47 m1= m2 </span>
<span>if 24J = 1/2mv² </span>
<span>then 24J = 1/2 m1 ( 6.7)² </span>
<span>48/ 44.89 = m1 </span>
<span>1.069 kg = m1 , then </span>
<span>0.47(1.069) = m2 </span>
<span>0.503 kg = m2</span>
The answer is letter C.Weight (on Earth) is the force due to the mass of Earth attracting whatever mass is subject of discussion.
The force of attraction between any two masses is called Newton's Law of Universal Gravitation:


is simply a given constant.
If we're at the surface of Eath,

refers to the mass of the Earth,

to the mass of whatever is on the surface of Earth, and

to the radius of Earth.
Normally, we define a constant

to be equal to

; in which

is the mass of Earth and

the radius of earth;

happens to be around 9.8.
By that, we adapt the Law of Universal Gravitation to objects on the surface of Earth, we call that force Weight.

As you can see, weight is directly proportional to mass, more mass implies more weight.
I think it would be 10 m/s
Answer:
See in explanation
Explanation:
Scientific use: The Einstein's THEORY of relativity states that "Time Is Absolute".
Everyday use: Einstein's LAW of relativity says that time is not the same at all places and events.
Answer:
Explanation:
Una magnitud fundamental es aquella que se define por si misma y es independiente de las demás (masa, tiempo, longitud, etc.). magnitud derivada. Una magnitud derivada es aquella que se obtiene mediante expresiones matemáticas a partir de las magnitudes fundamentales (densidad, superficie, velocidad).