Answer:
a) in the upper position. b) in the lower position. c) in the lower position. d) in the upper position. f) Its kinetic and potential energy will be 0, but the energy is transferred to the element or body that stopped the movement of the pendulum
Explanation:
In the attached image we have the sketch of a pendulum system.
A) The potential energy is maximum when the pendulum is in the upper position (image, fig 1) because the elevation (h) is maximum with respect to the reference point.
B) the potential energy is minimum when the pendulum is in the lower pasition (image, fig 2) because the elevation (h) is cero with respect to the reference point.
Note: When the pendulum is coming down the potential energy is transforming in kinetic energy.
C) The kinetic energy is maximum when the pendulum is in the lower position (image, fig 2), because the potential energy has been transformed in kinetic energy.
D) The kinetic energy is maximum when the pendulum is in the upper position (image, fig 1) because at this moment the pendulum is at rest it means its velocity is 0. We know that the kinetic energy depends on the velocity.
f) The energy is transferred to the element or body that stopped the movement of the pendulum
Answer:
<em>Angular displacement=68.25 rad</em>
Explanation:
<u>Circular Motion</u>
If the angular speed varies from ωo to ωf in a time t, then the angular acceleration is given by:

The angular displacement is given by:

The wheel decelerates from ωo=13.5 rad/s to ωf=6 rad/s in t=7 s, thus:



Thus, the angular displacement is:



Angular displacement=68.25 rad
B. Move from their ground states up to excited states
:)
The answer is A. the same.
Since the container is sealed, their will be no loss of material from the container which means that the mass won’t vary.