1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
2 years ago
8

An electron moving with a velocity v⃗ = 5.0 × 107 m/s i^ enters a region of space where perpendicular electric and a magnetic fi

elds are present. The electric field is E⃗ = 104 V/m j^. What magnetic field will allow the electron to go through the region without being deflected?
Physics
1 answer:
stiv31 [10]2 years ago
3 0

Answer:

Magnetic field, B=2\times 10^{-4}\ T

Explanation:

Given that,

Velocity of electron, v=5\times 10^7\ m/s

It enters  a region of space where perpendicular electric and a magnetic fields are present.

Magnitude of electric field, E=10^4\ V/m

We need to find the magnetic field will allow the electron to go through the region without being deflected.

Magnetic force on the electron, F_m=qvB\ sin\theta.......(1)

Electric force on the electron, F = q E........(2)

From equation (1) and (2) we get:

qvB\ sin\theta=qE

B=\dfrac{E}{v}

B=\dfrac{10^4\ V/m}{5\times 10^7\ m/s}

B = 0.0002 T

or

B=2\times 10^{-4}\ T

Hence, this is the required solution.

You might be interested in
You are launching a 2 kg potato out of a potato cannon. The cannon is 2.0 m long and is aimed 70 degrees above the horizontal. I
DochEvi [55]

Answer:

Explanation:

The net force on the potatoes is given by:

F= 52 - mgSintheta

F= 52- (2×9.8× Sin70°)

F = 52 -18.4

F= 33.58N

Using Newton's 2nd law

F = ma

a=F/m = 33.58/ 2 = 16.79m/s^2

Using the equation of motion:

V^2= u^2 + 2as

V^2 = 0 + 2× 16.79 x2

V^2 = 67.16

V=sqrt(68.16)

V= 8.195m/s This is the exit velocity of the potatoes

Kinetic energy, K.E = 1/2mv^2

KE= 1/2 × 2 × 8.195^2

KE = 67.16J

8 0
3 years ago
What are the factors that affect the resistance of a wire?
777dan777 [17]

1) Length of the wire.

2) Thickness of the wire.

3) Temperature.

4) Type of metal.

Hope this helps!

-Payshence

6 0
3 years ago
An electron and a proton are held on an x axis, with the electron at x = + 1.000 m
mixas84 [53]

Answer:

  r2 = 1 m

therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m

Explanation:

For this exercise we must use conservation of energy

the electric potential energy is

          U = k \frac{q_1q_2}{r_{12}}

for the proton at x = -1 m

          U₁ =- k \frac{e^2 }{r+1}

for the electron at x = 1 m

          U₂ = k \frac{e^2 }{r-1}

starting point.

        Em₀ = K + U₁ + U₂

        Em₀ = \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1}

final point

         Em_f = k e^2 ( -\frac{1}{r_2 +1} + \frac{1}{r_2 -1})

   

energy is conserved

        Em₀ = Em_f

        \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})              

       

        \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(  \frac{2}{(r_2+1)(r_2-1)} )

we substitute the values

½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [ - \frac{1}{20+1} + \frac{1}{20-1} ) = 9 109 (1.6 10-19) ²( \frac{2}{r_2^2 -1} )

          2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ ( \frac{1}{r_2^2 -1} )

          2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷     \frac{1}{r_2^2 -1}

          \frac{2.0475 \ 10^{-28} }{1.1549 \ 10^{-37} } = \frac{1}{r_2^2 -1}

          r₂² -1 = (4.443 10⁸)⁻¹

           

          r2 = \sqrt{1 + 2.25 10^{-9}}

          r2 = 1 m

therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m

4 0
3 years ago
What two quantities must stay the same in order for an object to have a constant velocity? A) The speed and kinetic energy must
GarryVolchara [31]

the answer is c) the speed and direction of travel must be constant


7 0
3 years ago
A planar electromagnetic wave is propagating in the +x direction. At a certain point P and at a given instant, the electric fiel
Free_Kalibri [48]

Answer:

B=2.74\times 10^{-10}\ T

Explanation:

It is given that,

A planar electromagnetic wave is propagating in the +x direction.The electric field at a certain point is, E = 0.082 V/m

We need to find the magnetic vector of the wave at the point P at that instant.

The relation between electric field and magnetic field is given by :

c=\dfrac{E}{B}

c is speed of light

B is magnetic field

B=\dfrac{E}{c}\\\\B=\dfrac{0.082}{3\times 10^8}\\\\B=2.74\times 10^{-10}\ T

So, the magnetic vector at point P at that instant is 2.74\times 10^{-10}\ T.

3 0
3 years ago
Other questions:
  • A 2.0-kg object moving at 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy l
    15·1 answer
  • Because it implies royal status, the granary at the Conical tower and circular wall of Great Zimbabwe is most similar to what ob
    13·1 answer
  • Which of the following statements are true regarding transformers?Check all that apply.
    9·2 answers
  • the gravity force between Mars and an object near Earth's surface as much lower than the force between an object on Earth surfac
    14·1 answer
  • How old is a bone if it still has 50% of its carbon-14 content?
    9·1 answer
  • Identify each statement as an example of melting or sublimation,
    5·1 answer
  • The temperature inside a Carnot refrigerator placed in a kitchen at 22 degree Celcius is 2 degree Celcius. The heat extracted fr
    5·1 answer
  • You push a 120kg crate across the floor at a constant velocity. Using a force detector, you notice the force needed to push the
    13·1 answer
  • In part a, (a) why did you set the frequency of the square wave to 0.40 hz? (b) what would have happened if you had set the freq
    10·1 answer
  • The observed a value for the diameter of a Hydrogen atom is 10.1 nm and the accepted value for this is 10 nm. Was you observatio
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!