1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
3 years ago
11

Tarzan swings on a 35.0 m long vine initially inclined at an angle of 44.0◦ with the vertical. The acceleration of gravity if 9.

81 m/s2.
What is his speed at the bottom of the swing if he
a) starts from rest?
b) pushes off with a speed of 6.00 m/s?
Physics
2 answers:
Lisa [10]3 years ago
7 0

Answer:

a) v_{f} \approx 0.328\,\frac{m}{s}, b) v_{f} \approx 6.009\,\frac{m}{s}

Explanation:

Let consider that bottom has a height of zero. The motion of Tarzan can be modelled after the Principle of Energy Conservation:

U_{g,1} + K_{1} = U_{g,2} + K_{2}

The final speed is:

K_{2} = U_{g,1} - U_{g,2} + K_{1}

\frac{1}{2}\cdot m \cdot v_{f}^{2} = m\cdot g \cdot L\cdot (\cos \theta_{2}-\cos \theta_{1}) + \frac{1}{2}\cdot m \cdot v_{o}^{2}

v_{f}^{2} = 2 \cdot g \cdot L \cdot (\cos \theta_{2} - \cos \theta_{1}) + v_{o}^{2}

v_{f} = \sqrt{v_{o}^{2}+2\cdot g \cdot L \cdot (\cos \theta_{2}-\cos \theta_{1})}

a) The final speed is:

v_{f} = \sqrt{(0\,\frac{m}{s} )^{2}+2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (35\,m)\cdot (\cos 0^{\textdegree}-\cos 44^{\textdegree})}

v_{f} \approx 0.328\,\frac{m}{s}

b) The final speed is:

v_{f} = \sqrt{(6\,\frac{m}{s} )^{2}+2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (35\,m)\cdot (\cos 0^{\textdegree}-\cos 44^{\textdegree})}

v_{f} \approx 6.009\,\frac{m}{s}

maks197457 [2]3 years ago
5 0

Answer:

(A) Vf = 13.8 m/s

(B)  Vf = 15.1 m/s      

Explanation:

length of rope (L) = 35 m

angle to the vertical = 44 degrees

acceleration due to gravity (g) = 9.8 m/s^{2}

(A) from conservation of energy

final kinetic energy + final potential energy = initial kinetic energy + initial potential energy

0.5m(Vf)^{2} + mg(Hf) =  0.5m(Vi)^{2} + mg(Hi)

where

m = mass

Hi = initial height = 35 cos 44 = 25.17

Hf = final height = length of vine = 35 m

Vi = initial velocity = 0 since he starts from rest

Vf = final velocity

the equation now becomes

0.5m(Vf)^{2} + mg(Hf) = mg(Hi)

0.5m(Vf)^{2} = mg (Hi - Hf)

0.5(Vf)^{2} = g (Hi - Hf)

0.5(Vf)^{2} = 9.8 x (25.17 - 35)

0.5(Vf)^{2} = - 96.3  (the negative sign tells us the direction of motion is downwards)

Vf = 13.8 m/s

(B) when the initial velocity is 6 m/s the equation remains

      0.5m(Vf)^{2} + mg(Hf) =  0.5m(Vi)^{2} + mg(Hi)

       m(0.5(Vf)^{2} + g(Hf)) =  m(0.5(Vi)^{2} + g(Hi))

      0.5(Vf)^{2} + g(Hf) = 0.5(Vi)^{2} + g(Hi)

      0.5(Vf)^{2} = 0.5(Vi)^{2} + g(Hi) - g(Hf)

       0.5(Vf)^{2} = 0.5(6)^{2} + (9.8 x (25.17 - 35))

        0.5(Vf)^{2} =  -114.3  ( just as above, the negative sign tells us the direction of motion is downwards)      

       Vf = 15.1 m/s

You might be interested in
Light passes through a pair of narrow slits with a 0.67-mm separation. It is found that the fourth bright fringe makes an angle
babunello [35]

Answer:

The wavelength of the light is 555 nm.

Explanation:

according to Bragg's law..

n×λ = d×sin(θ)

n is the fringe number

λ is the wavelength of the light

d is the slit separation

θ is the angle the light makes with the normal at the fringe.

7 0
4 years ago
If you kicked your mom <br><br> would she be mad?
vfiekz [6]

Answer:

Yes !

Explanation:

8 0
3 years ago
Conduction circulates heat throughout the atmosphere.<br><br><br> True or False<br><br> Help!!
katrin2010 [14]
Energy is transferred between the ground and the atmosphere via conduction.
Since air is a poor conductor, most energy transfer by conduction<span> occurs right at the earth's surface</span>
7 0
3 years ago
A nuclear reactor is:
Natali5045456 [20]
A device used to initiate and control a sustained nuclear chain reaction. 
3 0
3 years ago
Read 2 more answers
A sportscar has a mass of 1500 kg and accelerates at 5 meters per second squared. What is the magnitude of the force acting on t
Hatshy [7]

Answer:

7500 Newtons

Explanation:

Mass of the sportscar= 1500 kg

Acceleration of the sportscar= 5m/s^2

Hence, let the Force acting on it be F

We\ know\ that,\\Force=Mass*Acceleration\\F=ma\\\\Here,\\F=1500*5\\=7500 kg m/s^2\ or\ 7500\ Newtons

4 0
3 years ago
Other questions:
  • A photon ionizes a hydrogen atom from the ground state. The liberated electron 11. recombines with a proton into the first excit
    5·1 answer
  • When the time of day for a certain ship at sea is 12 noon, the time of day at the prime meridian (0 longitude0 is 5 pm. what is
    9·1 answer
  • When does it start to cool down in arizona?
    9·1 answer
  • Calculate The water pressure at the bottom of the Marianas Trench is approxi mately 1,100 kPa. With how much force would the wat
    7·1 answer
  • A woman throws a baseball straight up into the air. what is the baseball's acceleration at its highest point?
    10·1 answer
  • A car with bad shock absorbers bounces up and down with a period of 1.50 s after hitting a bump. The car has a mass of 1 500 kg
    5·1 answer
  • What is the restoring force of a spring with a spring constant of 4a and a stretched displacement of 3b? A. –7 ab B. `-7 a/b ` C
    9·1 answer
  • A sonar signal leaves a submarine, travels through
    11·1 answer
  • Number of vibrations (waves) in an amount of time
    13·1 answer
  • You walk from your bedroom, 25m to the mailbox, and then walk 25m back to your bedroom. What is your total distance? What is you
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!