1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
3 years ago
11

Tarzan swings on a 35.0 m long vine initially inclined at an angle of 44.0◦ with the vertical. The acceleration of gravity if 9.

81 m/s2.
What is his speed at the bottom of the swing if he
a) starts from rest?
b) pushes off with a speed of 6.00 m/s?
Physics
2 answers:
Lisa [10]3 years ago
7 0

Answer:

a) v_{f} \approx 0.328\,\frac{m}{s}, b) v_{f} \approx 6.009\,\frac{m}{s}

Explanation:

Let consider that bottom has a height of zero. The motion of Tarzan can be modelled after the Principle of Energy Conservation:

U_{g,1} + K_{1} = U_{g,2} + K_{2}

The final speed is:

K_{2} = U_{g,1} - U_{g,2} + K_{1}

\frac{1}{2}\cdot m \cdot v_{f}^{2} = m\cdot g \cdot L\cdot (\cos \theta_{2}-\cos \theta_{1}) + \frac{1}{2}\cdot m \cdot v_{o}^{2}

v_{f}^{2} = 2 \cdot g \cdot L \cdot (\cos \theta_{2} - \cos \theta_{1}) + v_{o}^{2}

v_{f} = \sqrt{v_{o}^{2}+2\cdot g \cdot L \cdot (\cos \theta_{2}-\cos \theta_{1})}

a) The final speed is:

v_{f} = \sqrt{(0\,\frac{m}{s} )^{2}+2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (35\,m)\cdot (\cos 0^{\textdegree}-\cos 44^{\textdegree})}

v_{f} \approx 0.328\,\frac{m}{s}

b) The final speed is:

v_{f} = \sqrt{(6\,\frac{m}{s} )^{2}+2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (35\,m)\cdot (\cos 0^{\textdegree}-\cos 44^{\textdegree})}

v_{f} \approx 6.009\,\frac{m}{s}

maks197457 [2]3 years ago
5 0

Answer:

(A) Vf = 13.8 m/s

(B)  Vf = 15.1 m/s      

Explanation:

length of rope (L) = 35 m

angle to the vertical = 44 degrees

acceleration due to gravity (g) = 9.8 m/s^{2}

(A) from conservation of energy

final kinetic energy + final potential energy = initial kinetic energy + initial potential energy

0.5m(Vf)^{2} + mg(Hf) =  0.5m(Vi)^{2} + mg(Hi)

where

m = mass

Hi = initial height = 35 cos 44 = 25.17

Hf = final height = length of vine = 35 m

Vi = initial velocity = 0 since he starts from rest

Vf = final velocity

the equation now becomes

0.5m(Vf)^{2} + mg(Hf) = mg(Hi)

0.5m(Vf)^{2} = mg (Hi - Hf)

0.5(Vf)^{2} = g (Hi - Hf)

0.5(Vf)^{2} = 9.8 x (25.17 - 35)

0.5(Vf)^{2} = - 96.3  (the negative sign tells us the direction of motion is downwards)

Vf = 13.8 m/s

(B) when the initial velocity is 6 m/s the equation remains

      0.5m(Vf)^{2} + mg(Hf) =  0.5m(Vi)^{2} + mg(Hi)

       m(0.5(Vf)^{2} + g(Hf)) =  m(0.5(Vi)^{2} + g(Hi))

      0.5(Vf)^{2} + g(Hf) = 0.5(Vi)^{2} + g(Hi)

      0.5(Vf)^{2} = 0.5(Vi)^{2} + g(Hi) - g(Hf)

       0.5(Vf)^{2} = 0.5(6)^{2} + (9.8 x (25.17 - 35))

        0.5(Vf)^{2} =  -114.3  ( just as above, the negative sign tells us the direction of motion is downwards)      

       Vf = 15.1 m/s

You might be interested in
Determine the total moment of inertia of a merry-go round with 5 children sitting on it. Of the five children, four are seated a
BaLLatris [955]

Answer:

Explanation:

Given that,

We have five children.

Each of mass m =30kg

They sit on a merry go round

Mass of Merry go round M= 150kg

Radius of Merry go round is r =2m

Four children sit at the edge of the merry go round but one child sit at the centre.

The four child that sit at the edge are 2m from the centre of the merry go round but the one at the centre is 0m from the centre

Moment of inertia?

Moment of inertia is given as

I=Σmi•ri²

For the question, the moment of inertia is the combination of inertial of child and the merry go round

I= I(merry go round) + I(four child)+ I(last child)

The merry go round is assumed to be a solid cylinder, so it is going to have the moment of inertia of solid cylinder

Then,

I(merry go round ) =½ Mr²

Also, Four of the child has the same moment of inertia, they are 2m form the centre of the merry go round why the last child has no moment of inertia

I= I(merry go round) + I(four child) +I(last child )

I= ½Mr² + 4mr² + mr'²

I = ½ × 150 ×2² + 4×30×2² + 30×0²

I = 300 +480+0

I = 780 kgm²

7 0
3 years ago
A student walks the hallway for 25 m stops to talk and continues down the hallway another 10 m what is the distance and displace
brilliants [131]

Answer:

Distance = displacement = 35m

Explanation:

The distance of the student is how far he has gone.

Distance = 25m + 10m

Distance = 35m

Displacement is the distance specified in specific direction. Since the student walk in the sane direction, thence the displacement is also 35m

3 0
3 years ago
Help me with Economics please and thank you the question is going to be down in a attached file while the answers on here
Tresset [83]
I think is A or B it depends on like what the trying to answer
6 0
3 years ago
Read 2 more answers
The tongue weight of a trailer should be what percent of the gross trailer weight rating
mario62 [17]

Answer:

between 10 and 15 percent

Explanation:

How to put your load

- First load the heavy

The safe trailer starts loading correctly. Uneven weight can affect steering, brakes and swing control.

In general, 60% of the weight of the load should be in the front half of the trailer and 40% in the rear half (unless the manufacturer indicates something different). When you place the load, you want it to be balanced from side to side, keeping the center of gravity near the ground and on the axle of the trailer.

-  Hold your load

After balancing the load, you must hold it in place. An untapped load can move when the vehicle is moving and cause trailer instability.

- Trailer weight

To avoid overloading the trailer, look for the recommended weight rating. It is located on the VIN plate in the trailer chassis, usually on the tongue. Confirm the Gross Vehicle Weight Classification (GVWR) before towing.

GVWR: is the total weight that the trailer can support, including its weight. You can also find this number as the Gross Trailer Weight (GTW). The weight of the tongue should be 10-15% of the GTW.

7 0
3 years ago
Flying against the wind, a jet travels 4640 in 8 hours. flying with the wind, the same jet travels 9000 in 9 hours. what is the
Vanyuwa [196]
17 in wind and 13640 meh buddy
3 0
3 years ago
Other questions:
  • I NEED HELP ASAP 1.    Suppose a skydiver (mass = 75 kg) is falling toward the Earth.  When the skydiver is 100 m above the Eart
    7·1 answer
  • Which of the following statements is true about scientific inquiry? 20 points
    10·2 answers
  • A 2 kg ball is attached by a string to the top of a vertical pole and swings in a circle of radius 1.2 m. If the string makes an
    8·1 answer
  • A 32-cm-long solenoid, 1.8 cm in diameter, is to produce a 0.30-T magnetic field at its center. If the maximum current is 4.5 A,
    11·1 answer
  • Juan is standing on the street. An ambulance moves toward him and then passes by. What best describes the pitch that Juan heats?
    8·1 answer
  • Which of the following is not a natural resource? a. time b. water c. land d. air Please select the best answer from the choices
    10·1 answer
  • mass is tied to spring and begins periodically . the distance between its highest and its lowest position is 48cm. what is the a
    15·1 answer
  • 9. What happens to the particles of a medium when the temperature is high?
    8·1 answer
  • 3) A school bus traveling at 12 m/s has a momentum of 144,000 kg.m/s.
    6·2 answers
  • Which statement is true
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!