1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
3 years ago
11

Tarzan swings on a 35.0 m long vine initially inclined at an angle of 44.0◦ with the vertical. The acceleration of gravity if 9.

81 m/s2.
What is his speed at the bottom of the swing if he
a) starts from rest?
b) pushes off with a speed of 6.00 m/s?
Physics
2 answers:
Lisa [10]3 years ago
7 0

Answer:

a) v_{f} \approx 0.328\,\frac{m}{s}, b) v_{f} \approx 6.009\,\frac{m}{s}

Explanation:

Let consider that bottom has a height of zero. The motion of Tarzan can be modelled after the Principle of Energy Conservation:

U_{g,1} + K_{1} = U_{g,2} + K_{2}

The final speed is:

K_{2} = U_{g,1} - U_{g,2} + K_{1}

\frac{1}{2}\cdot m \cdot v_{f}^{2} = m\cdot g \cdot L\cdot (\cos \theta_{2}-\cos \theta_{1}) + \frac{1}{2}\cdot m \cdot v_{o}^{2}

v_{f}^{2} = 2 \cdot g \cdot L \cdot (\cos \theta_{2} - \cos \theta_{1}) + v_{o}^{2}

v_{f} = \sqrt{v_{o}^{2}+2\cdot g \cdot L \cdot (\cos \theta_{2}-\cos \theta_{1})}

a) The final speed is:

v_{f} = \sqrt{(0\,\frac{m}{s} )^{2}+2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (35\,m)\cdot (\cos 0^{\textdegree}-\cos 44^{\textdegree})}

v_{f} \approx 0.328\,\frac{m}{s}

b) The final speed is:

v_{f} = \sqrt{(6\,\frac{m}{s} )^{2}+2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (35\,m)\cdot (\cos 0^{\textdegree}-\cos 44^{\textdegree})}

v_{f} \approx 6.009\,\frac{m}{s}

maks197457 [2]3 years ago
5 0

Answer:

(A) Vf = 13.8 m/s

(B)  Vf = 15.1 m/s      

Explanation:

length of rope (L) = 35 m

angle to the vertical = 44 degrees

acceleration due to gravity (g) = 9.8 m/s^{2}

(A) from conservation of energy

final kinetic energy + final potential energy = initial kinetic energy + initial potential energy

0.5m(Vf)^{2} + mg(Hf) =  0.5m(Vi)^{2} + mg(Hi)

where

m = mass

Hi = initial height = 35 cos 44 = 25.17

Hf = final height = length of vine = 35 m

Vi = initial velocity = 0 since he starts from rest

Vf = final velocity

the equation now becomes

0.5m(Vf)^{2} + mg(Hf) = mg(Hi)

0.5m(Vf)^{2} = mg (Hi - Hf)

0.5(Vf)^{2} = g (Hi - Hf)

0.5(Vf)^{2} = 9.8 x (25.17 - 35)

0.5(Vf)^{2} = - 96.3  (the negative sign tells us the direction of motion is downwards)

Vf = 13.8 m/s

(B) when the initial velocity is 6 m/s the equation remains

      0.5m(Vf)^{2} + mg(Hf) =  0.5m(Vi)^{2} + mg(Hi)

       m(0.5(Vf)^{2} + g(Hf)) =  m(0.5(Vi)^{2} + g(Hi))

      0.5(Vf)^{2} + g(Hf) = 0.5(Vi)^{2} + g(Hi)

      0.5(Vf)^{2} = 0.5(Vi)^{2} + g(Hi) - g(Hf)

       0.5(Vf)^{2} = 0.5(6)^{2} + (9.8 x (25.17 - 35))

        0.5(Vf)^{2} =  -114.3  ( just as above, the negative sign tells us the direction of motion is downwards)      

       Vf = 15.1 m/s

You might be interested in
In which scenario does radiation occur?
Zanzabum
Pretty sure a, because it’s a stove and it uses electricity like almost a normal appliance for the kitchen would, the rest are just a natural force without any radiation to occur in them, electricity is the same as technology and believe it or not technology like phones give off radiation, so yeah. hope this was helpful!
4 0
3 years ago
Read 2 more answers
What is tyndall effect​
ivann1987 [24]

Answer:

light scattering by particles in a colloid or in a very fine suspension

4 0
3 years ago
Read 2 more answers
1) According to the law of conservation of energy, A) an object loses most of its energy as friction. B) the total amount of ene
Blababa [14]
Your answer is C) <span> the potential energy of an object is always greater than its kinetic energy </span>
5 0
3 years ago
Two plane mirrors are separated by 120°, as the drawing illustrates. If a ray strikes mirror M1 at a θ1 = 64° angle of incidence
tino4ka555 [31]

Angle, θ2 at which the light leaves mirror 2 is 56°

<u>Explanation:</u>

Given-

θ1 = 64°

So, α will also be 64°

According to the figure:

α + β = 90°

So,

β = 90° - α

  = 90° - 64°

  = 26°

β + γ + 120° = 180°

γ = 180° - 120° - β

γ = 180° - 120° - 26°

γ = 34°

γ + δ = 90°

δ = 90° - γ

δ = 90° - 34°

δ = 56°

According to the law of reflection,

angle of incidence = angle of reflection

θ2 = δ = 56°

Therefore, angle θ2 at which the light leaves mirror 2 is 56°

8 0
3 years ago
To do work, this truck uses energy stored in chemical
GREYUIT [131]

800 J Got it right on edgenuity

4 0
3 years ago
Other questions:
  • _____ is a measure of the force of gravity pulling down on an object. it is measured in newtons (N), the common unit for measuri
    5·1 answer
  • The main difference between speed and velocity involves
    9·2 answers
  • PLEASE HELP When astronauts eliminate waste in space, which is likely to be used?  [A] showers and faucets, spraying hot water..
    12·1 answer
  • Science Question
    10·2 answers
  • A satellite with a mass of 5.6 E 5 kg is orbiting the Earth in a circular path. Determine the satellite's velocity if it is orbi
    11·1 answer
  • What is the size of filter paper​
    5·2 answers
  • A 10,000 N piano is dropped from the top of a building. When the piano reaches terminal speed…
    6·1 answer
  • A weather station is located 500 kilometers directly east of a second station. Winds at the eastern station are blowing from the
    12·2 answers
  • How would the photographer use the polarizing filter to find out the direction of polarization of the light coming from the blue
    5·1 answer
  • A 1100 kg racing car accelerates from rest at a constant rate and covers a distance of 50 m in 5 s. what is the car's accelerati
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!