Answer:
DETAILS IN THE QUESTION INSUFFICIENT TO ANSWER
Explanation:
Assuming the liquid to be water ,
the density
of water is :
Buoyant force exerted by a liquid on an object with
of it's volume immersed is :

where ,
is the buoyant force
is the density of the liquid
is the acceleration due to gravity
Thus at equilibrium:

from these , we get the density of brass to be 
which is not possible
Answer:
10 kJ
Explanation:
W = Fd
W = (μN)(vt)
W = μ(mg)vt
W = 0.7(42.9)(9.81)(9)(3.8)
W = 10,075.12506 J
W ≈ 10 kJ
Gravitational potential energy can be given by the equation
PE = mgh
where m is the mass,
g is the gravitational constant 9.81 or 10 depending on rounding
and h is the height
well weight is a force equiavlent to
W= m*g
so comparing that to the potential energy equation, divide the potential energy by the height and you will get weight in Newtons
Answer:
-54.12 V
Explanation:
The work done by this force is equal to the difference between the final value and the initial value of the energy. Since the charge starts from the rest its initial kinetic energy is zero.

The change in electrostatic potential energy
, of one point charge q is defined as the product of the charge and the potential difference.
