Answer: 10 m/s
We're told the speed is constant, so it's not changing throughout the time period given to us. So throughout the entire interval, the speed is 10 m/s.
Answer:
The Current Iₜ = I₁ + I₂ + I₃
Charge Qₜ = Q₁ + Q₂ + Q₃
Potential difference Vₜ = V₁ = V₂ = V₃
The total capacitance Cₜ = C₁ + C₂ + C₃
Explanation:
According to the attached image;
For parallel arrangements of capacitors, the current flowing through each of the capacitors sums up to the total current flowing through the circuit;
Iₜ = I₁ + I₂ + I₃
Also the charge storage by each capacitor sums up to give the total charge stored;
Qₜ = Q₁ + Q₂ + Q₃
The potential difference across each of the capacitors are the same and equal to the total voltage across the circuit;
Vₜ = V₁ = V₂ = V₃
The total capacitance equals the sum of the capacitances of each of the capacitors;
Cₜ = C₁ + C₂ + C₃
Answer:
Reflection involves a change in direction of waves when they bounce off a barrier. Refraction of waves involves a change in the direction of waves as they pass from one medium to another.
Explanation:
Answer:
The kinetic energy of the phone would increase. The gravitational potential energy of the phone would decrease.
Explanation:
The kinetic energy
of an object is proportional to the square of the speed of that object. If air resistance is negligible, the phone would accelerate under gravitational pull and speed up. Hence, the kinetic energy of the phone would increase.
The gravitational field near the surface of the earth is approximately constant. Hence, the gravitational potential energy
of the phone would be proportional to its height. As the phone approaches the ground, the height of the phone becomes lower and the gravitational potential energy of the phone would decrease.
Something hot like a fire , an eye of a stove , and the sun