1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly [62]
3 years ago
6

Please Help I'll Make You Brainliest

Physics
1 answer:
sergij07 [2.7K]3 years ago
7 0
{Answer}
A- (10kg sphere and 30m)

{I hope this helps :) }
You might be interested in
If a ping pong ball and a golf ball are both moving in the same direction with the same amount of kinetic energy, the speed of t
Liono4ka [1.6K]

If the kinetic energy of each ball is equal to that of the other,
then

(1/2) (mass of ppb) (speed of ppb)² = (1/2) (mass of gb) (speed of gb)²

Multiply each side by 2:

      (mass of ppb) (speed of ppb)² = (mass of gb) (speed of gb)²

Divide each side by (mass of gb) and by (speed of ppb)² :

     (mass of ppb)/(mass of gb)  =  (speed of gb)²/(speed of ppb)²

Take square root of each side:

       √ (ratio of their masses)  =  ( 1 / ratio of their speeds)²

By trying to do this perfectly rigorously and elegantly, I'm also
using up a lot of space and guaranteeing that nobody will be
able to follow what I have written.  Let's just come in from the
cold, and say it the clear, easy way:

If their kinetic energies are equal, then the product of each
mass and its speed² must be the same number.

If one ball has less mass than the other one, then the speed²
of the lighter one must be greater than the speed² of the heavier
one, in order to keep the products equal.

The pingpong ball is moving faster than the golf ball.

The directions of their motions are irrelevant.

5 0
3 years ago
Help meh in this question plzzz <br>​
iragen [17]

The Moment of Inertia of the Disc is represented by I = \frac{15}{32}\cdot M\cdot R^{2}. (Correct answer: A)

Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:

I = I_{D} - I_{H} (1)

Where:

  • I_{D} - Moment of inertia of the Disk.
  • I_{H} - Moment of inertia of the Hole.

Then, this formula is expanded as follows:

I = \frac{1}{2}\cdot M\cdot R^{2} - \frac{1}{2}\cdot m\cdot \left(\frac{1}{2}\cdot R^{2} \right) (1b)

Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole (m):

\frac{m}{M} = \frac{R^{2}}{4\cdot R^{2}}

m = \frac{1}{2}\cdot M

And the resulting equation is:

I = \frac{1}{2}\cdot M\cdot R^{2} -\frac{1}{2}\cdot \left(\frac{1}{4}\cdot M \right) \cdot \left(\frac{1}{4}\cdot R^{2} \right)

I = \frac{1}{2} \cdot M\cdot R^{2} - \frac{1}{32}\cdot M\cdot R^{2}

I = \frac{15}{32}\cdot M\cdot R^{2}

The moment of inertia of the Disc is represented by I = \frac{15}{32}\cdot M\cdot R^{2}. (Correct answer: A)

Please see this question related to Moments of Inertia: brainly.com/question/15246709

5 0
3 years ago
What are 2 ways electromagnets are used
lisabon 2012 [21]
Electromagnets are used for various purposes but I fathom in this instance, the questioner is asking about how electromagnetics can be used to attraction or repulsion.
Example, electromagnets are used for attraction in cranes which attach them to containers in order to lift them.
Meanwhile, Maglev trains use electromagnets repulsive properties.
4 0
3 years ago
HELP ME PLEASE! according ohm's law if the resistance remains constant what would happen if you decrease the amount of voltage b
SpyIntel [72]
B.
technically it would depend if the resistors were in series or parallel but B is the answer.
7 0
3 years ago
A bar magnet is dropped toward a conducting ring lying on the floor. As the magnet falls toward the ring, does it move as a free
Maslowich

Consider that the bar magnet has a magnetic field that is acting around it, which will imply that there is a change in the magnetic flux through the loop whenever it moves towards the conducting loop. This could be described as an induction of the electromotive Force in the circuit from Faraday's law.

In turn by Lenz's law, said electromotive force opposes the change in the magnetic flux of the circuit. Therefore, there is a force that opposes the movement of the bar magnet through the conductor loop. Therefore, the bar magnet does not suffer free fall motion.

The bar magnet does not move as a freely falling object.

3 0
3 years ago
Other questions:
  • How does charging by conduction occur?
    14·2 answers
  • An electromagnetic wave is propagating towards the west. At a certain moment the direction of the magnetic field vector associat
    8·1 answer
  • Which of Newton’s laws accounts for the following statement? Negative acceleration is proportional to applied braking force
    7·1 answer
  • A boy rubs two balloons against his sweater. One balloon acquires a charge of 3.0 E -6 C. The other balloon acquires a charge of
    6·1 answer
  • No work is done on an object when a force acting on the object does not move it. True False
    13·1 answer
  • Help I'll mark brainliest
    11·1 answer
  • When you park your car uphill next to a curb, the right front wheel should be:?
    10·1 answer
  • Which of the following is an example of a mechanical wave?
    14·2 answers
  • Why are some liquids more viscous than others?
    7·1 answer
  • You can formulate a medical term, which is easy to pronounce by combing the root with a .
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!