Answer:

Explanation:
<u>Diagonal Launch
</u>
It's referred to as a situation where an object is thrown in free air forming an angle with the horizontal. The object then describes a known path called a parabola, where there are x and y components of the speed, displacement, and acceleration.
The object will eventually reach its maximum height (apex) and then it will return to the height from which it was launched. The equation for the height at any time t is


Where vo is the magnitude of the initial velocity,
is the angle, t is the time and g is the acceleration of gravity
The maximum height the object can reach can be computed as

There are two times where the value of y is
when t=0 (at launching time) and when it goes back to the same level. We need to find that time t by making 

Removing
and dividing by t (t different of zero)

Then we find the total flight as

We can easily note the total time (hang time) is twice the maximum (apex) time, so the required time is

Answer:
3
Explanation:
The closer an orbit is to the nucleus the fewer energy
Answer:

Explanation:
We are given that
The wavelength of sound wave=
1 cm/s=
Speed of sound wave,v=
We have to find the period of the wave.
We know that
Frequency=
Using the formula
Frequency =
Hz
Time period=
Using identity:
Hence, the time period of the wave=
Well, first of all, the car is not moving at a uniform velocity, because,
on a curved path, its direction is constantly changing. Its speed may
be constant, but its velocity isn't.
The centripetal force on a mass 'm' that keeps it on a circle with radius 'r' is
F = (mass) · (speed)² / (radius).
For this particular car, the force is
(2,000 kg) · (25 m/s)² / (80 m)
= (2,000 kg) · (625 m²/s²) / (80 m)
= (2,000 · 625 / 80) (kg · m / s²)
= 15,625 newtons .