I always remembered the differences by Mitosis sounds like My Toes Is. Which means its body cells reproducing.
And Meiosis is My overies. Which is sex cells reproducing.
Mitosis - The body cell's nucleus makes a copy of its chromosomes. The Chromotids are then pulled to the poles of the cell and split in half, the cell then divides in half into two new cells. Each cell has one pair of chromosomes each.
Meiosis - The sex cells nucleus makes a copy of each chromosome same as before. But then the similar chromosomes group up and swap parts with each other. Making completely new chromosomes. They then split in half again, making two new cells with two different pairs of chromosomes. Which then split apart Once more creating 4 new cells (From the original one) Each with completely random chromosomes.
Answer:
Animals tend to use carbohydrates primarily for short-term energy storage, while lipids are used more for long-term energy storage. Carbohydrates are stored as glycogen in animals while lipids are stored as fats (in plants carbohydrates are stored as cellulose and lipids as oils)
Explanation:
hope this helps!
Metals on the left side, metalloids on the staircase, nonmetals on right side
24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:

which is equivalent to

The question states that the second equation has an enthalpy, or "heat", of neutralization of
. Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce
or
of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release
of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or
of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of
.
The solution has a specific heat of
. The solution thus have a heat capacity of
. Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of
, meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy.
are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.