Answer:
127°C
Explanation:
This excersise can be solved, with the Charles Gay Lussac law, where the pressure of the gas is modified according to absolute T°.
We convert our value to K → -73°C + 273 = 200 K
The moles are the same, and the volume is also the same:
P₁ / T₁ = P₂ / T₂
But the pressure is doubled so: P₁ / T₁ = 2P₁ / T₂
P₁ / 200K = 2P₁ / T₂
1 /2OOK = (2P₁ / T₂) / P₁
See how's P₁ term is cancelled.
200K⁻¹ = 2/ T₂
T₂ = 2 / 200K⁻¹ → 400K
We convert the T° to C → 400 K - 273 = 127°C
Answer:
False
Explanation:
Laboratory synthesis of aspirin is done by the acetylation of salicylic acid with the help of acetic anhydride .
As , the acid anhydride is very sensitive to moisture , as it can hydrolyze into two molecules of acids,
Hence , the reaction involving acid anhydride are conducted in anhydrous solvents .
Hence ,
if water is present in the glassware then , some of the acetic anhydride is wasted , Which in turns reduces the yield than that expected .
A. Zn²⁺
<h3>Further explanation</h3>
Given
Cations of several elements
Required
The least to be reduced
Solution
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe²⁺-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Fe³⁺-Ag-Pt-Au </em>
The electrode which is easier to reduce than the hydrogen (H2) electrode has a positive sign (E red= +) and is located to the right of the voltaic series (right of H)
The electrode which is easier to oxidize than the hydrogen (H2) electrode and is difficult to experience reduction has a negative sign (E red= -) and is located to the left of the voltaic series (left of H)
Or you can look at the standard reduction potential value of the metals in the answer options, and the most negative reduction E° value which will be difficult to reduce.
The Zn metal is located far left of the other metals in the answer choices, so it is the most difficult to reduce
They are important because they are the electrons that help the atom to bond with another atom. They are in the outer most shell. ☺️