1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miskamm [114]
2 years ago
14

Metallic spheres of radii 6 cm, 8 cm and 10 cm, respectively, are melted to form a single solid sphere. Find the radius of the r

esulting sphere.
Kindly help!​
Mathematics
2 answers:
zlopas [31]2 years ago
5 0

Answer:

As three metallic spheres are melted and recast into a single solid sphere, the sphere formed by recasting these three spheres will have the same volume equal to the sum of the volumes of the three spheres.

Volume of the resulting sphere = Sum of the volumes of three spheres

We will find the volume of the sphere by using formula;

Volume of the sphere = 4/3πr3where r is the radius of the sphere

Radius of 1st sphere, r₁ = 6 cm

Radius of 2nd sphere, r₂ = 8 cm

Radius of 3rd sphere, r₃ = 10 cm

Let the radius of the resulting sphere be r.

Volume of the resulting sphere = Sum of the volumes of three spheres

4/3 πr3 = 4/3 πr₁3 + 4/3 πr₂3 + 4/3 πr₃3

r3 = [r₁3 + r₂3 + r₃3]

r3 = [(6 cm)3 + (8 cm)3 + (10 cm)3]

r3 = [216 cm3 + 512 cm3 + 1000 cm3]

r3 = 1728 cm3

<h3>r = 12 cm</h3>

<u>Therefore, the radius of the sphere so formed will be 12 cm.</u>

Anna [14]2 years ago
4 0

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

★ Radius of first sphere \sf r_{1} = 6cm.

★ Radius of second sphere \sf r_{2} = 8cm.

★ Radius of third sphere \sf r_{3} = 10cm.

{\large{\textsf{\textbf{\underline{\underline{To \: Find :}}}}}}

★ The radius of the resulting sphere formed.

{\large{\textsf{\textbf{\underline{\underline{Formula \: used :}}}}}}

\star \: \tt Volume \: of \: sphere = {\underline{\boxed{\sf{\red{ \dfrac{ 4}{3}\pi {r}^{3}  }}}}}

{\large{\textsf{\textbf{\underline{\underline{Concept :}}}}}}

★ As, three spheres are melted to from one new sphere. Therefore, volume of three old sphere is equal to volume of new sphere.

i.e, Volume of first sphere + volume of second sphere + volume of third sphere = Volume of new sphere.

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Let,

The radius of resulting sphere be R

<u>According</u><u> </u><u>to</u><u> </u><u>the</u><u> </u><u>question</u><u>,</u>

• Volume of first sphere + volume of second sphere + volume of third sphere = Volume of new sphere.

\longrightarrow \sf  \dfrac{4}{3} \pi {(r_{1})}^{3}  + \dfrac{4}{3} \pi {(r_{2})}^{3} + \dfrac{4}{3} \pi {(r_{3})}^{3} = \dfrac{4}{3} \pi  {(R)}^{3}

• here

☆\: \sf r_{1} = 6cm

☆\: \sf r_{2} = 8cm

☆\: \sf r_{3} = 10cm

<u>Putting the values</u><u>,</u>

\longrightarrow \sf  \dfrac{4}{3} \pi {(6)}^{3}  + \dfrac{4}{3} \pi {(8)}^{3} + \dfrac{4}{3} \pi {(10)}^{3} = \dfrac{4}{3} \pi  {(R)}^{3}

<u>Takin</u><u>g</u><u> </u>" \dfrac{4}{3} \pi" <u>common,</u>

\longrightarrow \sf  \dfrac{4}{3} \pi \bigg[ {(6)}^{3}  +  {(8)}^{3} +  {(10)}^{3} \bigg] = \dfrac{4}{3} \pi  {(R)}^{3}

\longrightarrow \sf  \cancel{ \dfrac{4}{3} \pi} \bigg[ {(6)}^{3}  +  {(8)}^{3} +  {(10)}^{3} \bigg] = \cancel{ \dfrac{4}{3} \pi }  {(R)}^{3}

\longrightarrow \sf   \bigg[ {(6)}^{3}  +  {(8)}^{3} +  {(10)}^{3} \bigg] =  {(R)}^{3}

\longrightarrow \sf   \bigg[ 216  +512 +  1000 \bigg] =  {(R)}^{3}

\longrightarrow \sf   1728   =  {(R)}^{3}

\longrightarrow \sf    \sqrt[3]{1728}     = R

\longrightarrow \sf    \sqrt[3]{ 12 \times 12 \times 12 }     = R

\longrightarrow \sf    \sqrt[3]{ {(12)}^{3} }     = R

\longrightarrow \sf     R = \red{12 \: cm}

Therefore,

<u>Radius of the resulting sphere is 12cm.</u>

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

★ Figure in attachment.

{\underline{\rule{290pt}{2pt}}}

You might be interested in
A flower box in the shape of a right rectangular prism is made of thin metal, shown below. The box has length 90 centimeters (cm
masya89 [10]
1) Volume of the box = 90*45*45=<span>182250 cm³
2) filled with soil = 0.85*</span>182250= <span>154912.5 cm³
3) </span>182250 cm³-154912.5 cm³=<span>27337.5 cm³ not filled 
4) </span>27337.5 cm³/28316 cm³=0.9654 ≈ 1 bag
4 0
3 years ago
Reflect the point (-1,-4) in the y-axis followed by the x-axis. What point does it end at? What quadrant is it in? Answer in a c
coldgirl [10]
The top right quadrant
7 0
3 years ago
Hurrrrryyyyyyyyy A triangle is reduced.
slamgirl [31]

Answer:

Step-by-step explanation:

32

8 0
3 years ago
Read 2 more answers
What is the length of arc QR? <br> A. 1/3 π<br> B. 10/3 π<br> C. 5/3 π<br> D. 20/3 π
podryga [215]
D. 20/3 I think it’s the answe
3 0
3 years ago
It takes Jill 2 hours to run 14.5 miles. At this rate, how far could she run in 3 hours?​
Vanyuwa [196]

Answer:

21.75 miles

Step-by-step explanation:

2 hours=14.5 miles

3 hours=x

2x=14.5*3

x=\frac{14.5*3}{2}

5 0
3 years ago
Read 2 more answers
Other questions:
  • If you triple 4 and subtract 2 everyday
    10·1 answer
  • If 1/2 is subtracted from four times the reciprocal of a number, the result is 0. Find the number.
    12·2 answers
  • perimeter of parallelogram 140 cm if one side is longer than the other by 10cm, find the length of each of its parallel side
    8·1 answer
  • four students spent 12 dollars on school lunch at this rate find the amount 10 students would spend on the same school lunch
    8·1 answer
  • 3.
    8·1 answer
  • Simplifique la expresión hallando<br>(o, 5 + .6 - 0,05 ) x 10<br>3. 1 - 2,06​
    12·1 answer
  • 15 POINTS
    6·1 answer
  • Beforea question with division fraction she must multiply them
    15·2 answers
  • Determine the period of the following graph:
    9·1 answer
  • If each dimension of the rectangular prism is doubled, how will its total surface area change?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!