Answer:
Company A: 250+10n
Company B: 90+12n
Step-by-step explanation:
Using the Empirical Rule and the Central Limit Theorem, we have that:
- About 68% of the sample mean fall with in the intervals $1.64 and $1.82.
- About 99.7% of the sample mean fall with in the intervals $1.46 and $2.
<h3>What does the Empirical Rule state?</h3>
It states that, for a normally distributed random variable:
- Approximately 68% of the measures are within 1 standard deviation of the mean.
- Approximately 95% of the measures are within 2 standard deviations of the mean.
- Approximately 99.7% of the measures are within 3 standard deviations of the mean.
<h3>What does the Central Limit Theorem state?</h3>
By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation
.
In this problem, the standard deviation of the distribution of sample means is:

68% of the means are within 1 standard deviation of the mean, hence the bounds are:
99.7% of the means are within 3 standard deviations of the mean, hence the bounds are:
More can be learned about the Empirical Rule at brainly.com/question/24537145
#SPJ1
x has to equal 1. 3/10 + 1/5 = 1/2
the equation is now 1/2 + x = 1 1/2x
x = 1
1 1/2 = 1 1/2
Answer:
75%
Convert 3/4 to a percent. Begin by converting the fraction 3/4 into decimal. Multiply the decimal by 100 and write the result with the percentage sign: 0.75 × 100 = 75%.
Step-by-step explanation:
Answer:
Attached as image png.
Step-by-step explanation:
The alternating current (AC) breakdown voltage of an insulating liquid indicates its dielectric strength. An article gave the accompanying sample observations on breakdown voltage (kV) of a particular circuit under certain conditions. 62 51 53 58 42 54 56 61 59 64 51 53 64 62 50 68 54 55 57 50 55 50 56 55 46 56 54 55 53 47 48 56 58 48 63 58 57 56 54 59 54 52 50 55 60 51 56 59 Construct a boxplot of the data.
The boxplot is a method to represent a series of numerical data through their quartiles. In this way, the box diagram shows at a glance the median and quartiles of the data.