Answer:
Na: 1s2 2s2 2p6 3s1
Na+: 1s2 2s2 2p6
Na+ electronic configuration resemble that of Neon( 1s2 2s2 2p6)
In general, the electronic configuration of alkali metals ions resemble that of the group zero (noble gas)
Answer:
a) IUPAC Names:
1) (<em>trans</em>)-but-2-ene
2) (<em>cis</em>)-but-2-ene
3) but-1-ene
b) Balance Equation:
C₄H₁₀O + H₃PO₄ → C₄H₈ + H₂O + H₃PO₄
As H₃PO₄ is catalyst and remains unchanged so we can also write as,
C₄H₁₀O → C₄H₈ + H₂O
c) Rule:
When more than one alkene products are possible then the one thermodynamically stable is favored. Thermodynamically more substituted alkenes are stable. Furthermore, trans alkenes are more stable than cis alkenes. Hence, in our case the major product is trans alkene followed by cis. The minor alkene is the 1-butene as it is less substituted.
d) C is not Geometrical Isomer:
For any alkene to demonstrate geometrical isomerism it is important that there must be two different geminal substituents attached to both carbon atoms. In 1-butene one carbon has same geminal substituents (i.e H atoms). Hence, it can not give geometrical isomers.
Answer:
When additional product is added, the equilibrium shifts to reactants to reduce the stress. If reactant or product is removed, the equilibrium shifts to make more reactant or product, respectively, to make up for the loss.
The given equation is is

this is not balanced
The balanced equation will be:

Now as per it if we are using eight moles of HNO3 we are getting two moles of NO
so for each mole of NO we have to take four moles of HNO3
Hence the mole ratio of NO produced to HNO3 reacted will be = 1:4