Answer:
His average speed is 980 units
Answer:
a) R = ρ₀ L /π(r_b² - R_a²)
, b) ρ₀ = V / I π (r_b² - R_a²) / L
Explanation:
a) The resistance of a material is given by
R = ρ l / A
where ρ is the resistivity, l is the length and A is the area
the length is l = L and the resistivity is ρ = ρ₀
the area is the area of the cylindrical shell
A = π r_b² - π r_a²
A = π (r_b² - r_a²)
we substitute
R = ρ₀ L /π(r_b² - R_a²)
b) The potential difference is related to current and resistance by ohm's law
V = i R
we subsist the expression of resistance
V = I ρ₀ L /π (r_b² - R_a²)
ρ₀ = V / I π (r_b² - R_a²) / L
Answer:
weightlessness, condition experienced while in free-fall, in which the effect of gravity is canceled by the inertial (e.g., centrifugal) force resulting from orbital flight. ... Excluding spaceflight, true weightlessness can be experienced only briefly, as in an airplane following a ballistic (i.e., parabolic) path.
Answer:
1.170*10^-3 m
3.23*10^-32 m
Explanation:
To solve this, we apply Heisenberg's uncertainty principle.
the principle states that, "if we know everything about where a particle is located, then we know nothing about its momentum, and vice versa." it also can be interpreted as "if the uncertainty of the position is small, then the uncertainty of the momentum is large, and vice versa"
Δp * Δx = h/4π
m(e).Δv * Δx = h/4π
If we make Δx the subject of formula, by rearranging, we have
Δx = h / 4π * m(e).Δv
on substituting the values, we have
for the electron
Δx = (6.63*10^-34) / 4 * 3.142 * 9.11*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 5.67*10^-31
Δx = 1.170*10^-3 m
for the bullet
Δx = (6.63*10^-34) / 4 * 3.142 * 0.033*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 0.021
Δx = 3.23*10^-32 m
therefore, we can say that the lower limits are 1.170*10^-3 m for the electron and 3.23*10^-32 for the bullet
The sensation of a frequency is commonly referred to as the pitch of a sound. A high pitch sound corresponds to a high frequency sound wave and a low pitch sound corresponds to a low frequency sound wave. ... That is, two sound waves sound good when played together if one sound has twice the frequency of the other.