Answer:
To find the circumference (orbit) of an object, you use Pi x Diameter.
As you have the circumference of B, you divide it by Pi to get the Diameter.
So 120 divided by 3.141592654 = 38.2 minutes for the Diameter.
As' radius and Diameter will be 3x greater than B.
38.2 x 3 = 114.6
To get back to the orbital period, times 114.6 by Pi, and you will get 360 minutes
HOPE THIS HELPS AND PLS MARK AS BRAINLIEST
THNXX :)
Answer:
B. 24.2 m/s
Explanation:
Given;
mass of the roller coaster, m = 450 kg
height of the roller coaster, h = 30 m
The maximum potential energy of the roller coaster due to its height is given by;



Therefore, the maximum speed of the roller coaster is 24.2 m/s.
Answer:
2Ω
Explanation:
If a 18Ω resistance is cut into three equal parts each of the resistance will be 18Ω/3 = 6Ω
Equivalent ratio in parallel is expressed as:
1/R = 1/6 + 1/6 + 1/6
1/R = 3/6
Cross multiply
3R = 6
R = 6/3
R = 2Ω
Hence the required equivalent resistance is 2Ω
Answer:
The wavelength of the light is
.
Explanation:
Given that,
Distance between the slit centers d= 1.2 mm
Distance between constructive fringes 
Distance between fringe and screen D= 5 m
We need to calculate the wavelength
Using formula of width

Put the value into the formula




Hence, The wavelength of the light is
.
Answer:
a.) L = 2.64 kgm^2/s
b.) V = 4.4 m/s
Explanation: Jessica stretches her arms out 0.60 m from the center of her body. This will be considered as radius.
So,
Radius r = 0.6 m
Mass M = 2 kg
Velocity V = 1.1 m/s
Angular momentum L can be expressed as;
L = MVr
Substitute all the parameters into the formula
L = 2 × 1.1 × 0.6 = 1.32kgm^2s^-1
the combined angular momentum of the masses will be 2 × 1.32 = 2.64 kgm^2s-1
b. If she pulls her arms into 0.15 m,
New radius = 0.15 m
Using the same formula again
L = 2( MVr)
2.64 = 2( 2 × V × 0.15 )
1.32 = 0.3 V
V = 1.32/0.3
V = 4.4 m/s
Her new linear speed will be 4.4 m/s