<span>We can answer this using
the rotational version of the kinematic equations:</span><span>
θ = θ₀ + ω₀<span>t + ½αt²
-----> 1</span></span>
ω² = ω₀² + 2αθ
-----> 2
Where:
θ = final angular
displacement = 70.4 rad
θ₀ = initial
angular displacement = 0
ω₀ = initial angular
speed
ω = final angular speed
t = time = 3.80 s
α = angular acceleration
= -5.20 rad/s^2
Substituting the values
into equation 1:<span>
70.4 = 0 + ω₀(3.80)
+ ½(-5.20)(3.80)² </span><span>
ω₀ = (70.4
+ 37.544) / 3.80 </span><span>
ω₀ = 28.406
rad/s </span><span>
Using equation 2:
ω² = (28.406)² + 2(-5.2)70.4
ω = 8.65 rad/s
</span>
For B, it is because water is a really good conductor of electricity, so the electrician will get shocked
21/12 is equal to 1 3/4 hope this helps!
If the bulb is in series with something else, then . . .
-- The brightness of the bulb depends on the <em>other</em> device in the circuit.
-- If the other device is designed to use <em>less power</em> than the bulb, then the
other device gets <em>more power</em> than the bulb gets.
-- If the other device is designed to use <em>more power </em>than the bulb, then the
other device gets <em>less power</em> than the bulb gets.
-- If the other device is removed from the circuit, then the bulb doesn't light at all.
This description of the often-screwy behavior of a series circuit may partly explain
why the electric service in your home is not a series circuit.
Mass is <span>is a dimensionless quantity representing the amount of matter in a particle or object. The more mass something has, the more energy is used to lift it.</span>