Answer:
A. The athlete isn’t doing any work because he doesn’t move the weight.
Explanation:
We must remember the definition of work, which says that work is equal to the product of mass by the distance displaced. In this case, the athlete only does work when he lifts the weight from the ground to the point where he holds the weight suspended.
So when he's holding the weight, he doesn't do any work.
They are both created by waves of different forms of energy... sound is the oscillation of other substances, called a medium, while the electromagnetic waves are oscillating through electromagnetic energy.
Answer:
Workdone = 465766038 Joules.
Explanation:
<u>Given the following data;</u>
Mass = 1167
Initial velocity = 10m/s
Final velocity =28m/s
To find the workdone;
We know that from the workdone theorem, the workdone by an object or a body is directly proportional to the kinetic energy possessed by the object due to its motion.
Mathematically, it is given by the equation;
W = Kf - Ki
W = ½MVf² - ½MVi²
Substituting into the equation
W = ½(1167)*28² - ½(1167)*10²
W = ½ * 1361889* 784 - ½ * 1361889 * 100
W = 533860488 - 68094450
Workdone = 465766038 Joules.
The specific answer for that will be 71.38 kg
Answer:
The ball reaches Barney head in 
Explanation:
From the question we are told that
The rise velocity is 
The height considered is 
The horizontal velocity of the large object is 
Generally from kinematic equation

Here s is the distance of the object from Barney head ,
u is the velocity of the object along the vertical axis which is equal but opposite to the velocity of the helicopter
So

So

= 
Solving the above equation using quadratic formula
The value of t obtained is 