The dilation by a scale factor of 2 of the points A(2, 3), B(5, 4), C(3, 6) gives;
a. A'(4, 6), B'(10, 8), C'(6, 12)
b. A'(-2, -2), B'(4, 0), C'(0, 4)
c. The transformation that would carry dilation 1 onto dilation 2 is T(-6, -8)
- The area of dilation 1 and 2 are the same
- The center of dilation does not change the area
d. The proportion of the side length of Dilation 1 and Dilation 2 is 1:1
- The angle measures are the same
<h3>How can the new coordinates be found?</h3>
The general formula for finding the coordinates of the image of a point following a dilation is presented as follows;
![D _{(a , \: b)k}(x, \: y) = (a + k \times (x - a) , \: b+ k \times (y - b))](https://tex.z-dn.net/?f=D%20_%7B%28a%20%2C%20%5C%3A%20b%29k%7D%28x%2C%20%5C%3A%20y%29%20%3D%20%28a%20%2B%20k%20%5Ctimes%20%28x%20-%20a%29%20%2C%20%5C%3A%20%20b%2B%20k%20%5Ctimes%20%28y%20-%20b%29%29)
Where;
(a, b) = The center of dilation
k = The scale factor of dilation
(x, y) = The coordinate of the pre-image
The given points are;
A(2, 3), B(5, 4), C(3, 6)
a. The scale factor of dilation = 2
The center of dilation = The origin (0, 0)
Therefore;
![D _{(0 , \: 0)2}(2, \: 3) = (0 + 2 \times (2 - 0) , \: 0+ 2 \times (3 - 0)) = (4, \:6)](https://tex.z-dn.net/?f=D%20_%7B%280%20%2C%20%5C%3A%200%292%7D%282%2C%20%5C%3A%203%29%20%3D%20%280%20%2B%202%20%5Ctimes%20%282%20-%200%29%20%2C%20%5C%3A%20%200%2B%202%20%5Ctimes%20%283%20-%200%29%29%20%3D%20%284%2C%20%5C%3A6%29)
Therefore dilation about the origin, with a scale factor of 2 gives;
Similarly
b. With the center of dilation at (6, 8), we have;
![D _{(6 , \: 8)2}(2, \: 3) = (6 + 2 \times (2 - 6) , \: 8+ 2 \times (3 - 8)) = (-2, \:-2)](https://tex.z-dn.net/?f=D%20_%7B%286%20%2C%20%5C%3A%208%292%7D%282%2C%20%5C%3A%203%29%20%3D%20%286%20%2B%202%20%5Ctimes%20%282%20-%206%29%20%2C%20%5C%3A%20%208%2B%202%20%5Ctimes%20%283%20-%208%29%29%20%3D%20%28-2%2C%20%5C%3A-2%29)
![D _{(6 , \: 8)2}(5, \: 4) = (6 + 2 \times (5 - 6) , \: 8+ 2 \times (4 - 8)) = (4, \:0)](https://tex.z-dn.net/?f=D%20_%7B%286%20%2C%20%5C%3A%208%292%7D%285%2C%20%5C%3A%204%29%20%3D%20%286%20%2B%202%20%5Ctimes%20%285%20-%206%29%20%2C%20%5C%3A%20%208%2B%202%20%5Ctimes%20%284%20-%208%29%29%20%3D%20%284%2C%20%5C%3A0%29)
![D _{(6 , \: 8)2}(3, \: 6) = \mathbf{(6 + 2 \times (3 - 6) , \: 8+ 2 \times (6 - 8))} = (0, \:4)](https://tex.z-dn.net/?f=D%20_%7B%286%20%2C%20%5C%3A%208%292%7D%283%2C%20%5C%3A%206%29%20%3D%20%5Cmathbf%7B%286%20%2B%202%20%5Ctimes%20%283%20-%206%29%20%2C%20%5C%3A%20%208%2B%202%20%5Ctimes%20%286%20-%208%29%29%7D%20%3D%20%280%2C%20%5C%3A4%29)
c. The difference between the coordinates of the points on dilation 1 and 2 is a shift left 6 places and a shift downwards 8 places
Using notation, we have;
- Dilation 1 T(-6, -8) → Dilation 2
The area of the images of dilation 1 and 2 are equal given that the scale factor is the same.
- The location of the center of dilation does not change the area of the image
d. From the above calculation, given that the difference between pre-image point and the center is multiplied by the scale factor followed by the addition of the <em>x </em>and y-values, the lengths of the sides of dilation 1 and 2 are the same, such that we have;
- The proportion of the side lengths is 1
Given that the side lengths are the same, by AAA congruency postulate, we have;
- The angle measures are the same.
Learn more about dilation transformation here:
brainly.com/question/12561082
#SPJ1