Answer: Choice C) III onlyAs shown in the attached image, the altitudes are lines that are perpendicular to the sides of the triangle and they go through the opposite vertex. In the example shown, the orthocenter is the result of intersecting the altitudes. The
orthocenter is outside the obtuse triangle. It will never be on the triangle or on the inside of the triangle.
Answer:
A) Dimensions;
Length = 20 m and width = 10 m
B) A_max = 200 m²
Step-by-step explanation:
Let x and y represent width and length respectively.
He has 40 metres to use and he wants to enclose 3 sides.
Thus;
2x + y = 40 - - - - (eq 1)
Area of a rectangle = length x width
Thus;
A = xy - - - (eq 2)
From equation 1;
Y = 40 - 2x
Plugging this for y in eq 2;
A = x(40 - 2x)
A = 40x - 2x²
The parabola opens downwards and so the x-value of the maximum point is;
x = -b/2a
Thus;
x = -40/2(-2)
x = 10 m
Put 10 for x in eq 1 to get;
2(10) + y = 40
20 + y = 40
y = 40 - 20
y = 20m
Thus, maximum area is;
A_max = 10 × 20
A_max = 200 m²
Answer:letra b
Step-by-step explanation: