The complete balanced chemical equation for this is:
<span>3KOH + H3PO4
--> K3PO4 + 3H2O</span>
First we calculate the number of moles of H3PO4:
moles H3PO4 = 0.650 moles / L * 0.024 L = 0.0156 mol
From stoichiometry, 3 moles of KOH is required for every
mole of H3PO4, therefore:
moles KOH = 0.0156 mol H3PO4 * (3 moles KOH / 1 mole
H3PO4) = 0.0468 mol
Calculating for volume given molarity of 0.350 M KOH:
Volume = 0.0468 mol / (0.350 mol / L) = 0.1337 L = 133.7
mL
Answer:
<span>133.7 mL KOH</span>
True because it is warmer closer to the equator
1) Chemical reaction:
2(CH₃COO)₃Fe + 3MgCrO₄ → Fe₂(CrO₄)₃ + 3(CH₃COO)₂Mg.
m((CH₃COO)₃Fe) = 15,0 g.
m(MgCrO₄) = 10,0 g.
n((CH₃COO)₃Fe) = m((CH₃COO)₃Fe) ÷ M((CH₃COO)₃Fe).
n((CH₃COO)₃Fe) = 15 g ÷ 233 g/mol.
n((CH₃COO)₃Fe) = 0,064 mol.
n(MgCrO₄) = m(MgCrO₄) ÷ M(MgCrO₄).
n(MgCrO₄) = 10 g ÷ 140,3 g/mol.
n(MgCrO₄) = 0,071 mol; limiting reagens.
From chemical reaction: n(MgCrO₄) : n((CH₃COO)₂Mg) = 3 : 3.
n((CH₃COO)₂Mg) = 0,071 mol.
m((CH₃COO)₂Mg) = 0,071 mol · 142,4 g/mol.
n((CH₃COO)₂Mg) = 10,11 g.
2) Chemical reaction:
2(CH₃COO)₃Fe + 3MgSO₄ → Fe₂(SO₄)₃ + 3(CH₃COO)₂Mg.
m((CH₃COO)₃Fe) = 15,0 g.
m(MgSO₄) = 15,0 g.
n((CH₃COO)₃Fe) = m((CH₃COO)₃Fe) ÷ M((CH₃COO)₃Fe).
n((CH₃COO)₃Fe) = 15 g ÷ 233 g/mol.
n((CH₃COO)₃Fe) = 0,064 mol; limiting ragens.
n(MgSO₄) = m(MgSO₄) ÷ M(MgSO₄).
n(MgSO₄) = 15 g ÷ 120,36 g/mol.
n(MgSO₄) = 0,125 mol; limiting reagens.
From chemical reaction: n(CH₃COO)₃Fe) : n((CH₃COO)₂Mg) = 2 : 3.
n((CH₃COO)₂Mg) = 0,064 mol · 3/2.
n((CH₃COO)₂Mg) = 0,096 mol.
m((CH₃COO)₂Mg) = 0,096 mol · 142,4 g/mol.
m((CH₃COO)₂Mg) = 13,7 g.
Natural sources include decomposition,ocean release and respiration.
Human sources come from activities like cement production, deforestation as well as the burning of fossil fuels like coal,oil and natural gas.
Answer:
-Being in the service of quality, safety, designing and problem solving.
-It plays an importnat part in our lives too, to measure any surface, object, etc.
Explanation:
Measurement is perhaps one of the most fundamental concepts in science. Without the ability to measure, it would be difficult for scientists to conduct experiments or form theories.