Answer:

Explanation:
Hello,
Considering the ideal equation of state:

The moles are defined in terms of mass as follows:

Whereas
the gas' molar mass, thus:

Now, since the density is defined as the quotient between the mass and the volume, we get:

Solving for
:

Thus, the result is given by:
![density=\frac{(1atm)(44g/mol)}{[0.082atm*L/(mol*K)]*298.15K} \\density=1.8g/L=1.8x10^{-3}g/mL](https://tex.z-dn.net/?f=density%3D%5Cfrac%7B%281atm%29%2844g%2Fmol%29%7D%7B%5B0.082atm%2AL%2F%28mol%2AK%29%5D%2A298.15K%7D%20%5C%5Cdensity%3D1.8g%2FL%3D1.8x10%5E%7B-3%7Dg%2FmL)
Best regards.
1 mole Hg --------------- 6.02x10²³ atoms
?? moles Hg ------------ 1.30x10⁷ atoms
(1.30x10⁷) x 1 / 6.02x10²³ => 2.159x10⁻¹⁷ moles
Answer:
<h2>73.53 mL</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question we have

We have the final answer as
<h3>73.53 mL</h3>
Hope this helps you
According to Newton's first law of motion, it takes an unbalanced force to move an object at rest.
I hope this helps :)
Explanation:
option no 4 is correct answer
I hope is helpful