54 = x + (x+6) + x + (x+6)
54 = 4x +12
42 = 4x
10.5 = x
The two shorter sides (x) are 10.5 cm, the two longer sides are (10.5+6, that is 6 cm longer) 16.5 cm. 10.5 + 10.5 + 16.5 + 16.5 = 54 cm.
Given the expression:
![\displaystyle \large{ \sqrt[3]{ - 125} }](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7B%20%5Csqrt%5B3%5D%7B%20-%20125%7D%20%7D)
Definition:
![\displaystyle \large{ y = \begin{cases} \pm \sqrt[n]{x} \longrightarrow n = (2,4,6,8,...) \: \: (x \geqslant 0) \\ \sqrt[n]{x}\longrightarrow n = (1,3,5,7,...) \: \: (x \in \R) \end{cases}}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7B%20y%20%20%3D%20%5Cbegin%7Bcases%7D%20%20%20%5Cpm%20%5Csqrt%5Bn%5D%7Bx%7D%20%20%5Clongrightarrow%20n%20%20%3D%20%282%2C4%2C6%2C8%2C...%29%20%20%5C%3A%20%20%5C%3A%20%28x%20%5Cgeqslant%200%29%20%5C%5C%20%20%20%5Csqrt%5Bn%5D%7Bx%7D%5Clongrightarrow%20n%20%3D%20%281%2C3%2C5%2C7%2C...%29%20%5C%3A%20%20%5C%3A%20%28x%20%5Cin%20%5CR%29%20%5Cend%7Bcases%7D%7D)
First, factor the -125. -125 comes from (-5)×(-5)×(-5) or (-5)^3.
![\displaystyle \large{ \sqrt[3]{ ( - 5) \times ( - 5) \times ( - 5)} }](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7B%20%5Csqrt%5B3%5D%7B%20%28%20-%205%29%20%5Ctimes%20%28%20-%205%29%20%5Ctimes%20%28%20-%205%29%7D%20%7D)
Because if (-5)^2 = 25 then 25×(-5) again will be -125.
Since this is the cube root, we have to pull out 3 terms in one. There are 3 fives that we can take off and therefore,

The solution of the formula for E is given by:
E = 50m/L.
<h3>How to solve an expression for a variable?</h3>
To solve an expression for a variable, we have to isolate the variable.
In this problem, the expression is given by:
L = 50m/E
Hence we do the operations to isolate E, as follows:
LE = 50m
E = 50m/L.
A similar problem, in which an expression is solved for a variable, is given at brainly.com/question/13080471
#SPJ1
Begin making a chart of each car per hour. answer: 2hours
Answer:
<h2>

</h2>
Solution,
Let the points be A and B
A(-4 , 1)------>( X1, y1)
B(2,4)---------->( x2, y2)
Now,
Gradient:





Hope this helps...
Good luck on your assignment...