Answer:
793.25 mi/hr
Step-by-step explanation:
Given that:
The radius of the earth is = 3030 miles
The angular velocity = 
If a jet flies due west with the same angular velocity relative to the ground at the equinox;
We are to determine the How fast in miles per hour would the jet have to travel west at the 40th parallel for this to happen.
NOW;
Distance s is expressed by the relation
s = rθ

s = 793.25
The speed which depicts how fast in miles per hour the jet would have traveled is :


v = 793.25 mi/hr
Hence, the jet would have traveled 793.25 mi/hr due west at the 40th parallel for this to happen.
Answer:
3.84% of months would have a maximum temperature of 34 degrees or higher
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What percentage of months would have a maximum temperature of 34 degrees or higher?
This is 1 subtracted by the pvalue of Z when X = 34. So



has a pvalue of 0.9616
1 - 0.9616 = 0.0384
3.84% of months would have a maximum temperature of 34 degrees or higher
Answer:
64
Step-by-step explanation:
Answer:
Yes
Step-by-step explanation:
you can plug any number from the graph on the line and it's still going to equal something, i'm sorry this is really bad explaing but when it's a straight line you can plug anything in and still get an answer