Answer:
A. Spoofing
Explanation:
Spoofing is the act of disguising a communication from an unknown source as being from a known, trusted source. Spoofing can apply to emails, phone calls, and websites, or can be more technical, such as a computer spoofing an IP address, Address Resolution Protocol (ARP), or Domain Name System (DNS) server.
IP spoofing involves an attacker trying to gain unauthorised access to a system by sending messages with a fake or "spoofed" IP address to make it look like the message came from a trusted source, such as one on the same internal computer network, for example.
Email spoofing often involves things like requests for personal data or financial transactions. The emails appear to be from trusted senders such as customers, coworkers, or managers but they are actually from cyber criminals who deliberately disguise themselves to gain your trust and your help with the action they want you to take
1.)
<span>((i <= n) && (a[i] == 0)) || (((i >= n) && (a[i-1] == 0))) </span>
<span>The expression will be true IF the first part is true, or if the first part is false and the second part is true. This is because || uses "short circuit" evaluation. If the first term is true, then the second term is *never even evaluated*. </span>
<span>For || the expression is true if *either* part is true, and for && the expression is true only if *both* parts are true. </span>
<span>a.) (i <= n) || (i >= n) </span>
<span>This means that either, or both, of these terms is true. This isn't sufficient to make the original term true. </span>
<span>b.) (a[i] == 0) && (a[i-1] == 0) </span>
<span>This means that both of these terms are true. We substitute. </span>
<span>((i <= n) && true) || (((i >= n) && true)) </span>
<span>Remember that && is true only if both parts are true. So if you have x && true, then the truth depends entirely on x. Thus x && true is the same as just x. The above predicate reduces to: </span>
<span>(i <= n) || (i >= n) </span>
<span>This is clearly always true. </span>
Answer:
Both Flat, round discs.
A DVD can hold six times as much as compacity than a disc.
A CD is a Compact Disc.
Answer:
a is the correct answer
Explanation:
correct me if I'm wrong hope it's help thanks
Answer:
The method definition to this question can be given as:
Method definition:
double max(double x, double y) //define method with double parameter
{
if (x>=y) //check condition.
return x; //return value
else
return y; //return value
}
double max(int x, int y) //define method with integer parameter
{
if (x>=y) //check condition
return x; //return value
else
return y; //return value
}
double max(char x, char y) //define method with char parameter
{
if (x>=y) //check condition
return x; //return value
else
return y; //return value
}
Explanation:
The above method definition can be described as below:
- In the first method definition first, we define a method that is "max()". In this method we pass two variables as a parameter that is "x and y" and the datatype of this is double. Then we use a conditional statement. In the if block we check if variable x is greater then equal to y then it will return x else it will return y.
- In the second method definition, we define a method that is same as the first method name but in this method, we pass two integer variable that is "x and y". Then we use a conditional statement. In the if block we check if variable x is greater then equal to y then it will return x else it will return y.
- In the third method definition, we define a method that is same as the first and second method name but in this method, we pass two char variable that is "x and y". Then we use a conditional statement. In the if block we check if variable x is greater then equal to y then it will return x else it will return y.