The simulation of the medicine and the bowler hat are illustrations of probability
- The probability that the medicine is effective on at least two is 0.767
- The probability that the medicine is effective on none is 0
- The probability that the bowler hits a headpin 4 out of 5 times is 0.3281
<h3>The probability that the medicine is effective on at least two</h3>
From the question,
- Numbers 1 to 7 represents the medicine being effective
- 0, 8 and 9 represents the medicine not being effective
From the simulation, 23 of the 30 randomly generated numbers show that the medicine is effective on at least two
So, the probability is:
p = 23/30
p = 0.767
Hence, the probability that the medicine is effective on at least two is 0.767
<h3>The probability that the medicine is effective on none</h3>
From the simulation, 0 of the 30 randomly generated numbers show that the medicine is effective on none
So, the probability is:
p = 0/30
p = 0
Hence, the probability that the medicine is effective on none is 0
<h3>The probability a bowler hits a headpin</h3>
The probability of hitting a headpin is:
p = 90%
The probability a bowler hits a headpin 4 out of 5 times is:
P(x) = nCx * p^x * (1 - p)^(n - x)
So, we have:
P(4) = 5C4 * (90%)^4 * (1 - 90%)^1
P(4) = 0.3281
Hence, the probability that the bowler hits a headpin 4 out of 5 times is 0.3281
Read more about probabilities at:
brainly.com/question/25870256
Answer:
Center (-13,11) , radius 3
Step-by-step explanation:
The given circle has equation

We compare this to the general equation.

where (-a,-b) is the center.
This implies that;
2a=26

2b=-22
b=-11
The center is therefore (-13,11)
The radius is given by



The radius is 3
Answer:
C. (x + 2, Y - 3)
Step-by-step explanation:
C. (x + 2, Y - 3)
Answer:
C. with 3000 successes of 5000 cases sample
Step-by-step explanation:
Given that we need to test if the proportion of success is greater than 0.5.
From the given options, we can see that they all have the same proportion which equals to;
Proportion p = 30/50 = 600/1000 = 0.6
p = 0.6
But we can notice that the number of samples in each case is different.
Test statistic z score can be calculated with the formula below;
z = (p^−po)/√{po(1−po)/n}
Where,
z= Test statistics
n = Sample size
po = Null hypothesized value
p^ = Observed proportion
Since all other variables are the same for all the cases except sample size, from the formula for the test statistics we can see that the higher the value of sample size (n) the higher the test statistics (z) and the highest z gives the strongest evidence for the alternative hypothesis. So the option with the highest sample size gives the strongest evidence for the alternative hypothesis.
Therefore, option C with sample size 5000 and proportion 0.6 has the highest sample size. Hence, option C gives the strongest evidence for the alternative hypothesis