Answer:
Approximately 3.5 feet - Option B
Step-by-step explanation:
Imagine that you have this walkway around the garden, with dimensions 30 by 20 feet. This walkway has a difference of x feet between it's length, and say the dimension 30 feet. In fact it has a difference of x along both dimensions - on either ends. Therefore, the increases length and width should be 30 + 2x, and 20 + 2x, which is with respect to an increases area of 1,000 square feet.
( 30 + 2x )
( 20 + 2x ) = 1000 - Expand "( 30 + 2x )
( 20 + 2x )"
600 + 100x + 4
= 1000 - Subtract 1000 on either side, making on side = 0
4
+ 100x - 400 = 0 - Take the "quadratic equation formula"
( Quadratic Equation is as follows ) -
,
,

There can't be a negative width of the walkway, hence our solution should be ( in exact terms )
. The approximated value however is 3.5081...or approximately 3.5 feet.
The fourth option is correct.
See the attached image. The red cylinder represents a washer formed by the described revolution. Its volume is

so when we integrate, we take

Answer:
answer is in picture
Step-by-step explanation:
Answer:
-x^2-2x-3
Step-by-step explanation:
- Question 1: Just substitute in the values of f(x) and g(x) and simplify!
- f(x) - g(x) = 4x^2-5x+3-(5x^2-3x+6)
- f(x)-g(x) = 4x^2-5x+3-5x^2+3x-6
- f(x)-g(x) = -x^2-2x-3
Tell me if this helps, and if you still need number 2 or if you can do it by yourself! (Hint: substituting also plays a role in question number 2.)
Hope this helps!!
your answer is a ok i hope this helpful