Answer:
multiply the left side of the constant vector by the inverse matrix
Step-by-step explanation:
The matrix equation ...
AX = B
is solved by left-multiplying by the inverse of A:
A⁻¹AX = A⁻¹B
IX = A⁻¹B . . . . . the result of multiplying A⁻¹A is the identity matrix
X = A⁻¹B . . . . . B needs to be multiplied by the inverse matrix
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{cc}-4&1\\3&2\end{array}\right]^{-1}\left[\begin{array}{c}9&7\end{array}\right]=\dfrac{1}{11}\left[\begin{array}{cc}-2&1\\3&4\end{array}\right]\left[\begin{array}{c}9&7\end{array}\right]=\left[\begin{array}{c}-1&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-4%261%5C%5C3%262%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D9%267%5Cend%7Barray%7D%5Cright%5D%3D%5Cdfrac%7B1%7D%7B11%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%261%5C%5C3%264%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D9%267%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-1%265%5Cend%7Barray%7D%5Cright%5D)
Answer:
2116 - 5n
—————————
4
Step-by-step explanation:
Hope it helped! :)
Answer:
<u>Given </u>
A
<u>Find the inverse of f(x):</u>
- x = 3 + 6f⁻¹(x)
- 6f⁻¹(x) = x - 3
- f⁻¹(x) = (x - 3) / 6
B
- f · f⁻¹( ∛5/6) =
- f( f⁻¹( ∛5/6)) =
- f((∛5/6 - 3)/6) =
- 3 + 6((∛5/6 - 3)/6) =
- 3 + ∛5/6 - 3 =
- ∛5/6
C
- f · f⁻¹(x) =
- f(f⁻¹(x)) =
- f((x - 3)/6) =
- 3 + 6(x - 3)/6 =
- 3 + x - 3 =
- x