Answer:
..2.50x + 3.75x = 15..
Step-by-step explanation:
i think
Answer:
f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)
Step-by-step f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)explanation:
f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(xf(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1) + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(xf(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1) + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)
The bigger number is 42 and the smaller number is 10
Answer:
10.153 years
Step-by-step explanation:
The future value of such an investment is given by ...
FV = P·(1 +r/12)^(12t)
where P is the principal invested, FV is the future value of it, r is the annual interest rate, and t is the number of years.
Dividing by P and taking the log, we have ...
FV/P = (1 +r/12)^(12t)
log(FV/P) = 12t·log(1 +r/12)
Dividing by the coefficient of t gives ...
t = log(FV/P)/log(1 +r/12)/12 = log(3000/2000)/log(1 +.003333...)/12 ≈ 121.842/12
t ≈ 10.153 . . . years