1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
1 year ago
9

This is 8th grade math on khan academy, correct answers only ty- 7 points have a gud day folks

Mathematics
2 answers:
nika2105 [10]1 year ago
4 0

Answer:

The correct answer is 9^2

Step-by-step explanation:

9 is the base and 7-5=2. so n=2.

blsea [12.9K]1 year ago
3 0
<h3>Answer:</h3>

9² or 9^2

<h3>Step-by-step explanation:</h3>

Because the base is the same on the top and the bottom which is "9", you would either add or subtract the top and bottom exponent based on the arithmetic symbol used.

Because the arithmetic symbol division sign is used, you subtract the top exponent by the bottom giving you the answer nine to the power of two.

You might be interested in
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
2 years ago
44+88= __ (2+4)<br><br> 11<br> 6<br> 2<br> 22
DENIUS [597]
Dang I was just about to say 22
8 0
3 years ago
Read 2 more answers
Which numbers on the spinner<br> have less than a 25% probability<br> of being spun?
TiliK225 [7]

Answer:

1

Step-by-step explanation:

I not completely sure but I think it 1

4 0
2 years ago
A rectangular pyramid fits exactly on top of a rectangular prism. The prism has a length of 16 cm, a width of 6 cm, and a height
blondinia [14]

Answer:

<u>1,216 cm³</u>

Step-by-step explanation:

Volume (composite space figure) = Volume (pyramid) + volume (prism)

  • ⇒ [16 x 6 x 14 / 3] + [16 x 6 x 8]
  • ⇒ 96 [14/3 + 8]
  • ⇒ 96 [14/3 + 24/3]
  • ⇒ 96 x 38/3
  • ⇒ 32 x 38
  • ⇒ <u>1,216 cm³</u>
3 0
2 years ago
Round to the nearest tenth if necessary.
Andrei [34K]

Answer:

B) 25

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)

<u>Algebra II</u>

  • Distance Formula: \displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

Point (-1, -8)

Point (-4, -4)

<u>Step 2: Find distance </u><em><u>d</u></em>

Simply plug in the 2 coordinates into the distance formula to find distance <em>d</em>

  1. Substitute in points [Distance Formula]:                                                         \displaystyle d = \sqrt{(-4--1)^2+(-4--8)^2}
  2. [√Radical] (Parenthesis) Subtract:                                                                   \displaystyle d = \sqrt{(-3)^2+(4)^2}
  3. [√Radical] Evaluate exponents:                                                                       \displaystyle d = \sqrt{9+16}
  4. [√Radical] Add:                                                                                                 \displaystyle d = \sqrt{25}
  5. [√Radical] Evaluate:                                                                                           \displaystyle d = 5
4 0
2 years ago
Other questions:
  • Given the points (3, 0) and (-1, -3), which of the statements below is true?
    10·1 answer
  • Using 7 four times and 1 one time getting to 100​
    12·1 answer
  • Evaluate the combination.<br> 5C4 <br><br> A.) 1<br> B.) 4<br> C.) 5<br> D.) 10
    13·1 answer
  • Which expression is not equal to 28?
    9·2 answers
  • What is the volume? Use the pi button on your calculator. Round to nearest hundredth. (Don't include units, just the #.)
    14·1 answer
  • Calculate the exact value of cos(a−b) given that sin a=12/13 with π/2
    11·1 answer
  • 2. Cameron worked 8 hours at the coffee shop. He earned the same amount in tips and wages each hour. At the end of his shift, Ca
    11·1 answer
  • Is (–3, –2) a solution to the equation y = x + –1?
    15·1 answer
  • The kicker on the football team made 8 out of 9 of his field goals. about what percent of field goals did the kicker miss
    14·2 answers
  • tickets to a carnival are $5 for adults and $3 for children. if 215 people attend and the receipts were $925 , how many tickets
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!