Answer:
1.44 x 10²⁵ ions of Na⁺
Explanation:
Given parameters:
Mass of NaCl = 1.4kg = 1400g
Unknown:
Number of ions of sodium = ?
Solution:
The compound NaCl in ionic form can be written as;
NaCl → Na⁺ + Cl⁻
In 1 mole of NaCl we have 1 mole of sodium ions
Now, let us find the number of moles in NaCl;
Number of moles =
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Number of moles =
= 23.93mol
So;
Since 1 mole of NaCl gives 1 mole of Na⁺
In 23.93 mole of NaCl will give 23.93 mole of Na⁺
1 mole of a substance = 6.02 x 10²³ ions of a substance
23.93 mole of a substance = 6.02 x 10²³ x 23.93
= 1.44 x 10²⁵ ions of Na⁺
The Answer is D cause of the people going back and forth.
<u>Answer:</u> The solubility of
in water is 
<u>Explanation:</u>
The balanced equilibrium reaction for the ionization of cadmium phosphate follows:

3s 2s
The expression for solubility constant for this reaction will be:
![K_{sp}=[Cd^{2+}]^3[PO_4^{3-}]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCd%5E%7B2%2B%7D%5D%5E3%5BPO_4%5E%7B3-%7D%5D%5E2)
We are given:

Putting values in above equation, we get:

Hence, the solubility of
in water is 
The new volume of the air bubble that has an initial volume of 5.0 ml released at the bottom of a lake where the pressure is 3.0 atm is 15mL.
<h3>How to calculate volume?</h3>
The volume of a given gas can be calculated by using the following formula:
P1V1 = P2V2
Where;
- P1 = initial pressure
- V1 = initial volume
- P2 = final pressure
- V2 = final volume
5 × 3 = 1 × V2
15 = V2
V2 = 15mL
Therefore, the new volume of the air bubble that has an initial volume of 5.0 ml released at the bottom of a lake where the pressure is 3.0 atm is 15mL.
Learn more about volume at: brainly.com/question/1578538
<span>The radioactive uranium decays into its daughter product, lead. It would do this in magma as well, as nuclear decay depends on forces within the atom, not on the phase of the material in which the atom is a part.</span>