Answer:
1.
meteorology A line drawn on a map or chart connecting places of equal or constant pressure.
2.
nuclear physics Either of two nuclides of different elements having the same mass number.
3.
thermodynamics A set of points or conditions at constant pressure.
Answer:
2KClO3 —> 2KCl + 3O2
The coefficients are 2, 2, 3
Explanation:
From the question given above, we obtained the following equation:
KClO3 —> 2KCl + 3O2
The above equation can be balance as follow:
There are 2 atoms of K on the right side and 1 atom on the left side. It can be balance by putting 2 in front of KClO3 as shown below:
2KClO3 —> 2KCl + 3O2
Now, the equation is balanced.
Thus, the coefficients are 2, 2, 3
Answer:
The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Explanation:
Water potential = Pressure potential + solute potential


We have :
C = 0.15 M, T = 273.15 K
i = 1
The water potential of a solution of 0.15 m sucrose= 
(At standard temperature)


The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Answer:

Explanation:
Let us first take a look at the image below;
In the acid - base reaction; we can see the transfer of electrons that takes place;
We can also see that the reaction goes in the direction which converts the stronger acid and the stronger base to the weaker acid and the weaker base.
The stronger acid is shown with the one with more negative
Value.
∴ The equilibrium constant for the acid-base reaction is expressed as:


From
Value (shown in the image below), it is clear and vivid that hydrobromic acid is a stronger acid than the ethyloxonium ion, therefore the equilibrium lies to the right.
From the chemical equation (shown in the attached image); the equilibrium constant for the acid-base reaction can be expressed as:


