Answer:
The answer is all of the above
Explanation:
Sound has waves which are compression waves and those waves transfer into energy molecules. Sound is heard by human ears. Sound waves can behave in predictable ways. All sound requires a medium through to travel
Answer:
I think that the trend that would be seen in the time column of the data table would be that the number of seconds would increase. I know this because for each flask, the concentration of sodium thiosulfate decreases, since less of it is being mixed with more water. Also, when the concentration of a substance decreases, then the reaction rate also decreases, as there will be fewer collisions with sulfuric acid if there are fewer moles of sodium thiosulfate. When there are fewer collisions in a reaction, the reaction itself will take longer, and so when the sodium thiosulfate is diluted, the reaction takes more time.
Explanation:
<em>I verify this is correct. </em>
Answer:
The pressure is 5.62 atm.
Explanation:
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= ?
- V= 5.005 L
- n= 1.255 mol
- R= 0.082

- T= 273.5 K
Replacing:
P* 5.005 L= 1.255 mol* 0.082
*273.5 K
Solving:

P= 5.62 atm
<u><em>The pressure is 5.62 atm.</em></u>
Baking soda and vinegar react because of an acid-base reaction. The product of this creates carbon dioxide.
Subtracting the mass of (flask+water) from the empty flask gives:
95.023 g - 85.135 g = 9.888 grams of water
Dividing this by the given volume of 10.00 mL water gives:
9.888 grams of water / 10.00 mL of water = 0.9888 g/mL of water
Therefore, based on this sample, the density of water is 0.9888 g/mL, which is close to the usually accepted approximation of 1 g/mL.