Answer:
protons and neutrons are found in nucleus
<span>C. 11.2 L
There are several different ways to solve this problem. You can look up the density of CO2 at STP and work from there with the molar mass of CO2, but the easiest is to assume that CO2 is an ideal gas and use the ideal gas properties. The key property is that a mole of an idea gas occupies 22.413962 liters. And since you have 0.5 moles, the gas you have will occupy half the volume which is
22.413962 * 0.5 = 11.20698 liters. And of the available choices, option "C. 11.2 L" is the closest match.
Note: The figure of 22.413962 l/mole is using the pre 1982 definition of STP which is a temperature of 273.15 K and a pressure of 1 atmosphere (1.01325 x 10^5 pascals). Since 1982, the definition of STP has changed to a temperature of 273.15 K and a pressure of exactly 10^5 pascals. Because of this lower pressure, one mole of an ideal gas will have the higher volume of 22.710947 liters instead of the older value of 22.413962 liters.</span>
Answer:
i dont think its walking to school because that doesn't use any resources.
Explanation:
i think its driving a car because we use gasoline for that and for sailing we use the wind. hopefully that helps.
Answer:
And we have to calculate the number of moles of sucrose present in a lb mass of sucrose: Moles of sucrose=454⋅g342.30⋅g⋅mol−1=1.33⋅mol .
Explanation:
<u>Brainliest</u><u> </u><u>Answer </u><u>Pls</u>
Answer:
Types of Potential Energy
Elastic Potential Energy. Anything that can act like a spring or a rubber band can have elastic potential energy. ...
Gravitational Potential Energy. There is a constant attractive force between the Earth and everything surrounding it, due to gravity. ...
Chemical Potential Energy.
(IF THIS HELPED CAN YOU GIVE ME A BRAINYLEST PLEASE?)