M1V1 = M2V2
M1 = 3.000 M
V1 = 0.8000 L
M2 = ?
V2 = 2.00 L
M2 = M1V1/V2 = (3.000 M)(0.8000 L)/(2.00 L) = 1.20 M
Answer:
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
Explanation:
A → B
Initial concentration of the reactant = x
Final concentration of reactant = 10% of x = 0.1 x
Time taken by the sample, t = ?
Formula used :

where,
= initial concentration of reactant
A = concentration of reactant left after the time, (t)
= half life of the first order conversion = 56.6 hour
= rate constant

Now put all the given values in this formula, we get

t = 188.06 hour
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
The aim is to use less space while demonstrating the distribution of electrons in shells
If you want to depict how an atom's electrons are scattered across its subshells, an orbital notation is more suited.
This is due to the fact that some atoms have unique electronic configurations that are not readily apparent from textual configurations.
<h3>How does electron configuration work?</h3>
The placement of electrons in orbitals surrounding an atomic nucleus is known as electronic configuration, also known as electronic structure or electron configuration.
<h3>What sort of electron arrangement would that look like?</h3>
- For instance: You can see that oxygen contains 8 electrons on the periodic table.
- These 8 electrons would fill in the following order: 1s, 2s, and finally 2p, according to the aforementioned fill order. O 1s22s22p4 would be oxygen's electron configuration.
learn more about electronic configuration here
brainly.com/question/26084288
#SPJ4