Answer:
B(-3, -3)
Step-by-step explanation:
If a point O(x, y) divides line segment XY in the ratio of n:m and the endpoints of the segment are
, the coordinates of O is:

Given that A(6, -6) and C(-6, 2). Pont B is on AC such that:
AB = (3/4)AC
AB/AC = 3/4
Therefore point B divides the line AC in the ratio of 3:1. Let point B be at (x, y), therefore:

Therefore the location of B is at (-3, -3)
Answer:
Slope intercept form is y = mx + b
m is slope
b is y intercept
y = -4/5x + -9
I only know that first one sry
Step-by-step explanation:
Answer: 2*99
Step-by-step explanation:
To see if the answer is correct divide 198/99 and you'll get 2. To find answers like these you have to divide in order to get the answer that is correct.
Hope This Helps!
Step-by-step explanation:
2nd option is ur answer hope u get it
Answer:
<em>First </em><em>we </em><em>will </em><em>find</em><em> </em><em>the</em><em> </em><em>surface</em><em> </em><em>area</em><em> of</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>triangle</em><em>.</em><em> </em><em> </em><em> </em><em> </em>
<u>area </u><u>of</u><u> the</u><u> </u><u>right</u><u> </u><u>triangle=</u><u>1</u><u>/</u><u>2</u><u>*</u><u>base*</u><u>height</u><u>.</u>
<em>now</em><em> </em><em>multiply</em><em> </em><em>it </em><em>by</em><em> </em><em>2</em><em> </em><em>then </em><em>we </em><em>will</em><em> </em><em>get </em><em>the</em><em> </em><em>S.A </em><em>of </em><em>both</em><em> the</em><em> </em><em>right</em><em> </em><em>triangles</em><em>.</em>
Now, the other seems to be a rectangle,so find its area. And also the unseen side is a rectangle so find its area also .
<u> </u><u>And</u><u>. </u><u> </u><u> </u><u>now</u><u> </u><u>at </u><u>the</u><u> </u><u>last</u><u>. </u><u> </u><u> </u><u> </u><u>plus</u><u>. </u><u> </u><u> </u><u>the</u><u> </u><u> </u><u>area</u><u> of</u><u> </u><u>all </u><u>the</u><u> </u><u>sides</u><u>. </u><u> </u><u> </u><u> </u><u>you</u><u> </u><u>will</u><u> get</u><u> </u><u>your</u><u> answer</u><u>.</u><u> </u><u>understand </u><u>buddy</u><u>.</u><u /><u />