Two angles are said to be complementary, if the sum of the two angles is 90 degrees.
Given that the measure of angle SWT is 50 degrees, thus, the measure of the complementary angles will be 90 - 50 = 40 degrees.
From the diagram, the measure of angle USP is 40 degrees, hence it is a complement of angle SWT.
Recall that the angle on a straight line is equal to 180 degrees, thus the sum of the measures of angles USP, WST and TSV is 180 degrees.
i.e. mUSP + mWST + mTSV = 180 degrees
40 + 100 + mTSV = 180
mTSV = 180 - 140 = 40 degrees.
Hence angle TSV is complementary to angle SWT.
Therefore, the complementary angles to angle SWT are angle USP and angle TSV.
Resposta:
Primer rectangle:
Amplada = 11
Longitud = 14
Segon rectangle:
Amplada = 12
Longitud = 15
Tercer rectangle:
Amplada = 13
Longitud = 16
Explicació pas a pas:
Donat que:
Primer rectangle:
Amplada = x
Longitud = x + 3
2n rectangle:
Augment de la dimensió d'1 cm respecte al primer rectangle;
Amplada = x + 1
Longitud = x + 4
3r rectangle:
Augment de la dimensió de 2 cm respecte al primer rectangle;
Amplada = x + 2
Longitud = x + 5
Suma dels tres perímetres del rectangle:
Perímetre d'un rectangle: 2 (l + O)
Primer rectangle:
2 (x + x + 3) = 2 (2x + 3) = 4x + 6
2n:
2 (x + 1 + x + 4) = 2 (2x + 5) = 4x + 10
3r:
2 (x + 2 + x + 5) = 2 (2x + 7) = 4x + 14
Suma de perímetres = 162
(4x + 6 + 4x + 10 + 4x + 14) = 162
12x + 30 = 162
12x = 162 - 30
12x = 130
x = 11
Per tant,
Primer rectangle:
Amplada = 11
Longitud = 11 + 3 = 14
2n rectangle:
Amplada = 11 + 1 = 12
Longitud = 11 + 4 = 15
3r rectangle:
Amplada = 11 + 2 = 13
Longitud = 11 + 5 = 16
Answer:
Correct option: e) a two-way table.
Step-by-step explanation:
In this case the store wants to see whether there is a relationship between the satisfaction level of the customer and their gender.
In statistics when there is a need to analyze or derive a relation between two categorical variables one should use a two-way table.
Categorical variables are qualitative variables that take on specific values that are usually labels. For example, grades obtained in an exam, gender, etc.
In this case the two categorical variables are: Gender and Satisfaction level.
To study the relation between the gender of a customer and their satisfaction level use a two-way table.