I know you said "without making any assumptions," but this one is pretty important. Assuming you mean  are shape/rate parameters (as opposed to shape/scale), the PDF of
 are shape/rate parameters (as opposed to shape/scale), the PDF of  is
 is

if  , and 0 otherwise.
, and 0 otherwise.
The MGF of  is given by
 is given by
![\displaystyle M_X(t) = \Bbb E\left[e^{tX}\right] = \int_{-\infty}^\infty e^{tx} f_X(x) \, dx = \frac{2^8}{\Gamma(8)} \int_0^\infty x^7 e^{(t-2) x} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20M_X%28t%29%20%3D%20%5CBbb%20E%5Cleft%5Be%5E%7BtX%7D%5Cright%5D%20%3D%20%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7Btx%7D%20f_X%28x%29%20%5C%2C%20dx%20%3D%20%5Cfrac%7B2%5E8%7D%7B%5CGamma%288%29%7D%20%5Cint_0%5E%5Cinfty%20x%5E7%20e%5E%7B%28t-2%29%20x%7D%20%5C%2C%20dx)
Note that the integral converges only when  .
.
Define

Integrate by parts, with


so that

Note that

By substitution, we have

and so on, down to

The integral of interest then evaluates to

so the MGF is

The first moment/expectation is given by the first derivative of  at
 at  .
.
![\Bbb E[X] = M_x'(0) = \dfrac{8\times\frac12}{\left(1-\frac t2\right)^9}\bigg|_{t=0} = \boxed{4}](https://tex.z-dn.net/?f=%5CBbb%20E%5BX%5D%20%3D%20M_x%27%280%29%20%3D%20%5Cdfrac%7B8%5Ctimes%5Cfrac12%7D%7B%5Cleft%281-%5Cfrac%20t2%5Cright%29%5E9%7D%5Cbigg%7C_%7Bt%3D0%7D%20%3D%20%5Cboxed%7B4%7D)
Variance is defined by
![\Bbb V[X] = \Bbb E\left[(X - \Bbb E[X])^2\right] = \Bbb E[X^2] - \Bbb E[X]^2](https://tex.z-dn.net/?f=%5CBbb%20V%5BX%5D%20%3D%20%5CBbb%20E%5Cleft%5B%28X%20-%20%5CBbb%20E%5BX%5D%29%5E2%5Cright%5D%20%3D%20%5CBbb%20E%5BX%5E2%5D%20-%20%5CBbb%20E%5BX%5D%5E2)
The second moment is given by the second derivative of the MGF at  .
.
![\Bbb E[X^2] = M_x''(0) = \dfrac{8\times9\times\frac1{2^2}}{\left(1-\frac t2\right)^{10}} = 18](https://tex.z-dn.net/?f=%5CBbb%20E%5BX%5E2%5D%20%3D%20M_x%27%27%280%29%20%3D%20%5Cdfrac%7B8%5Ctimes9%5Ctimes%5Cfrac1%7B2%5E2%7D%7D%7B%5Cleft%281-%5Cfrac%20t2%5Cright%29%5E%7B10%7D%7D%20%3D%2018)
Then the variance is
![\Bbb V[X] = 18 - 4^2 = \boxed{2}](https://tex.z-dn.net/?f=%5CBbb%20V%5BX%5D%20%3D%2018%20-%204%5E2%20%3D%20%5Cboxed%7B2%7D)
Note that the power series expansion of the MGF is rather easy to find. Its Maclaurin series is

where  is the
 is the  -derivative of the MGF evaluated at
-derivative of the MGF evaluated at  . This is also the
. This is also the  -th moment of
-th moment of  .
.
Recall that for  ,
,

By differentiating both sides 7 times, we get

Then the  -th moment of
-th moment of  is
 is

and we obtain the same results as before,
![\Bbb E[X] = \dfrac{(k+7)!}{7!\,2^k}\bigg|_{k=1} = 4](https://tex.z-dn.net/?f=%5CBbb%20E%5BX%5D%20%3D%20%5Cdfrac%7B%28k%2B7%29%21%7D%7B7%21%5C%2C2%5Ek%7D%5Cbigg%7C_%7Bk%3D1%7D%20%3D%204)
![\Bbb E[X^2] = \dfrac{(k+7)!}{7!\,2^k}\bigg|_{k=2} = 18](https://tex.z-dn.net/?f=%5CBbb%20E%5BX%5E2%5D%20%3D%20%5Cdfrac%7B%28k%2B7%29%21%7D%7B7%21%5C%2C2%5Ek%7D%5Cbigg%7C_%7Bk%3D2%7D%20%3D%2018)
and the same variance follows.