1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svet_ta [14]
2 years ago
11

Need help on these trig homework

Mathematics
1 answer:
allochka39001 [22]2 years ago
3 0

8. The length of the support is 7. 9 m

9. The length of the conveyer is 12m

3. a = 59m

A = 44°

B = 52°

4. c = 88. 6 mm

b = 49. 1 m

B = 34°

<h3>How to solve the trigonometry</h3>

8. We have the angle to be 20 degrees

Opposite side = x

hypotenuse = 23m

Using the sine ratio

sin θ = opposite/ hypotenuse

sin 20 = \frac{x}{23}

Cross multiply

sin 20 × 23 = x

x = 0. 3420 × 23

x = 7. 9 m

The length of the support is 7. 9 m

9. The angle of elevation is 37. 3 degrees

Hypotenuse = 19 . 0m

Opposite = x

Using the sine ratio

sin θ = opposite/ hypotenuse

sin 37. 3 = \frac{x}{19}

cross multiply

x = 0. 6059 × 19

x = 11.5

x = 12 m in 2 significant figures

The length of the conveyer is 12m

3. To determine the sides and angles, we use the sine rule;

\frac{a}{sin A} = \frac{b}{sin B} = \frac{c}{sin C}

For side a, we use the Pythagorean theorem

c^2 = a^2 + b^2

85^2 = a^2 + 67^2

a = \sqrt{89^2-67^2}

a = \sqrt{3432}

a = 58. 58, a = 59m

To find angle A and B, use the sine rule

\frac{59}{sin A } = \frac{85}{sin 90}

cross multiply

sin A × 85 = sin 90 × 59

make sin A subject of formula

sin A = \frac{59}{85}

sin A = 0. 6941

A = sin^-^1(0. 6941)

A = 44°

\frac{67}{sin B} = \frac{85}{sin 90}

cross multiply

sin B × 85 = sin 90 × 67

make sin b subject of formula

sin B = \frac{67}{85}

sin B = 0. 7882

B = sin^-^1( 0. 7882)

B = 52°

4. To find the sides, we use the sine rule;

\frac{74. 0}{sin 56. 6} = \frac{c}{sin 90}

Cross multiply

sin 56. 6 × c = sin 90 × 74

make 'c' subject of formula

c = \frac{74}{0. 8348}

c = 88. 6 mm

To find length b, we use the Pythagorean theorem

c^2 = a^2 + b^2

b^2 = c^2 - a^2

b^2 = 88. 8^2 - 74^2

b = \sqrt{7885. 44 - 5476}\\\\ b = \sqrt{2409. 44}

b = 49. 1 m

\frac{74. 0}{sin 56. 6} = \frac{49. 1}{sin B}

cross multiply

sin B = \frac{40. 99}{74. 0}

B = sin^-^1(0. 5539)

B = 34°

Learn more about trigonometric identity here:

brainly.com/question/7331447

#SPJ1

You might be interested in
To show me similarity to this statement, how can it be done?
Alenkasestr [34]

We start with the expression at the left of the equation.

We can combine the terms as:

\begin{gathered} \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}} \\ \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})} \end{gathered}

We can now apply the distributive property for the both the numerator and denominator. We can see also that the denominator is the expansion of the difference of squares:

\begin{gathered} \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2})^2-(\sqrt[]{2-\sqrt[]{3}}))^2} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})+(\sqrt[]{3}-2)\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{2^{}-(2-\sqrt[]{3})^{}} \\ \frac{\sqrt[]{2}\cdot(2+\sqrt[]{3})-\sqrt[]{2-\sqrt[]{3}}\cdot(2+\sqrt[]{3})+\sqrt[]{2}\cdot(\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}\cdot(\sqrt[]{3}-2)}{2-2+\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2+\sqrt[]{3}+\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}(-2-\sqrt[]{3}+\sqrt[]{3}-2)}{\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2\sqrt[]{3})+\sqrt[]{2-\sqrt[]{3}}(-4)}{\sqrt[]{3}} \\ 2\sqrt[]{2}-4\frac{\sqrt[]{2-\sqrt[]{3}}}{\sqrt[]{3}} \end{gathered}

We then can continue rearranging this as:

7 0
1 year ago
Enter the missing numbers in the boxes to complete the table of equivalent ratios of time to distance.
andre [41]
Answer:  Here is the complete table, with the filled in values:
______________________________________________________________
Time (h)    Distance (mi)
    3                2 
    9                6
   12                8
   18               12
___________________________________________________

Explanation:
___________________________________________________
Let us begin by obtaining the "?" value; that is, the "distance" (in "mi.") ;
         when the time (in "h") is "18" ; 
___________________________________________________

12/8 = 18/?  

Note: "12/8 = (12÷4) / (8÷4) = 3/2 ;

Rewrite:  3/2 = 18/? ;  cross-multiply:  3*? = 2 * 18 ; 
                                                                        3*? = 36 ;

                                                                      Divide each side by "3" ;
                                                                            The "?" = 36/3 = 12 ;

So, 12/8 = 18/12 ;

The value: "12" takes the place for the "?" in the table for "distance (in "mi.);
                              when the "time" (in "h") is "18".
__________________________________________________________
Now, let us obtain the "? " value for the "distance" (in "mi.");
                when the "time" (in "h") is:  "9" .

12/8 = 9/? ;  Solve for "?" ;

We know (see aforementioned) that "12/8 = 3/2" ; 

So, we can rewrite:  3/2 = 9/? ;  Solve for "?" ; 

Cross-multiply:  3* ? = 2* 9 ;    3* ? = 18 ;  
                                                           Divide each side by "3" ;
                                                    to  get:  "6" for the "?" value.

When the time (in "h") is "9", the distance (in "mi.") is "6" .
____________________________________________________
Now, to solve the final "?" value in the table given.

9/6 = ?/2 ;  Note:  We get the "6" from our "calculated value" (see above problem). 

9/6 = (9÷3) / (6÷3) = 3/2 ;  

So, we know that the "?" value is:  "3" .

Alternately:   9/6 = ?/2 ; 

Cross-multiply:  6*? = 2*9 ;   6 * ? = 18 ;  Divide each side by "6" ;
                                                               to find the value for the "?" ; 
                                                                    "?" = 18/6 = "3" .

When the "distance" (in "mi.") is:  "2" ;  the time (in "h") is:  "3" .
____________________________________________________
Here is the complete table—with all the values filled in:
____________________________________________________

<span>Time (h)    Distance (mi)
____________________________________________________
    3                2 
    9                6
   12                8
   18               12
____________________________________________________
</span>
6 0
4 years ago
What is the equivalent decimal?
ivanzaharov [21]
0.15 with dash on top and the dash means its a repeating decimal and a repeating decimal is a decimal that repeats itself in this case it would be 0.1515151515 and so on 
3 0
3 years ago
Which of the following is a figure consisting of two rays with the same endpoint? Angle Circle Line Vertex
viva [34]

Answer:Angle

Step-by-step explanation:

8 0
3 years ago
Solve this problem thanks
vovikov84 [41]

The three missing lengths are the left hypotenuse, x, the middle altitude, y, and the right hypotenuse, z.


9/y = y/16


y^2 = 9 * 16


y^2 = 144


y = 12


9^2 + 12^2 = x^2


x^2 = 225


x = 15


12^2 + 16^2 = z^2


z^2 = 400


z = 20


From left to right, the sides measure 15, 12, and 20 units.

5 0
4 years ago
Read 2 more answers
Other questions:
  • suppose a movie theater sold 200 adult tickets for a showing with a revenue of $980. if the adult tickers were $6.50 and the stu
    11·1 answer
  • Select all of the transformations that could change the location of the asymptotes of a cosecant of secant function. vertical sh
    12·2 answers
  • Find the derivative of x2/8-8x
    12·1 answer
  • What is 64,569 rounded off to the nearest thousand
    12·1 answer
  • What is the slope of a trend line that passes through the points (-3, 3) and (18, 26)?
    7·1 answer
  • Whats the square root of 81
    15·2 answers
  • O. Find the value of x 1f 5 - 8x =29<br>(a)-3<br>(b) - 2<br>(d) 2<br>(e) 3<br>(c) o​
    6·2 answers
  • X&gt;-3 Whts the awnser
    14·1 answer
  • In order to buy a $38 pair of shoes, you have to borrow $16 from your friend. How much money did you start with
    15·2 answers
  • ( Math ) Please explain how you got this answer! Please use substitution method!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!