A) The greatest rectangular area will be the area of a square 10 m on each side, 100 m^2.
b) The new dimensions will be 11 m × 11 m.
.. The new area will be (11 m)^2 = 121 m^2.
c) The area was increased by 121 m^2 -100 m^2 = 21 m^2, or 21%.
d) Yes, and no.
.. If you increase the dimensions by 10%, the area will increase by 21%.
.. (40 m)^2 = 1600 m^2
.. (44 m)^2 = 1936 m^2 = 1.21*(1600 m^2), an increase of 21% over the original.
.. If you increase the dimensions by 1 unit, the area will increase by (2x+1) square units, where x is the side of the original. For x≠10, this is not 21 square units.
.. (41 m)^2 = 1681 m^2 = 1600 m^2 +(2*40 +1) m^2 = 1600 m^2 +81 m^2
Answer:
See below in bold.
Step-by-step explanation:
For the fair coin Prob(head) = 1/2 and Prob(Tail) = 1/2.
For the biased coin it is Prob(head) = 2/3 and Prob(Tail) = 1/3.
a) Prob(2 heads) = 1/2 * 2/3 = 1/3.
b) Prob(2 tails) = 1/2 * 1/3 = 1/6.
c) Prob(1 head ) = Prob(H T or T H) = 1/2 * 1/3 + 1/2 * 2/3) = 1/6+1/3 = 1/2.
d) Prob (at least one head) = prob (HH or TH or HT) = 1/3 + 1/2 =<em> </em>5/6.
Solve for the area of the circular region first:
A = pi*r^2
A = pi*(30 mi)^2
A = 2827.43 mi^2
Density = 70000 people/2827.43 mi^2
Density = 24.76 = 25 people/mi^2 <--ANSWER Plz vote brainnliest
P E M D A S
Pren
Equ
Multiply
Divide
Add
Subtract