Have you seen the state of her body. Mad. If I wear it I ain’t wearing a jolly. ADEOLA wanna ride in the gysa
Answer:
(C) 29°
Explanation:
ACME THREAD ANGLE : it is the angle measured between the thread axis and thread the thread flanks, with the help of thread angle we calculate the shape of screw thread it is the mean of v thread and square thread the acme thread angle is denoted by β every thread has its own charactersistics which depends on the pitch and diameter of the thread
Answer:
(a) Precipitation hardening - 1, 2, 4
(b) Dispersion strengthening - 1, 3, 5
Explanation:
The correct options for each are shown as follows:
Precipitation hardening
From the first statement; Dislocation movement is limited by precipitated particles. This resulted in an expansion in hardness and rigidity. Precipitates particles are separated out from the framework after heat treatment.
The aging process occurs in the second statement; because it speaks volumes on how heated solutions are treated with alloys above raised elevated temperature. As such when aging increases, there exists a decrease in the hardness of the alloy.
Also, for the third option for precipitation hardening; This cycle includes the application of heat the alloy (amalgam) to a raised temperature, maintaining such temperature for an extended period of time. This temperature relies upon alloying components. e.g. Heating of steel underneath eutectic temperature. Subsequent to heating, the alloy is extinguished and immersed in water.
Dispersion strengthening
Here: The effect of hearting is not significant to the hardness of alloys hardening by the method in statement 3.
In statement 5: The process only involves the dispersion of particles and not the application of heat.
Answer:
a. Wa = 73.14 Btu/lbm
b. Sgen = 0.05042 Btu/lbm °R
c. Isentropic efficiency is 70.76%
d. Minimum specific work for compressor W = -146.2698 Btu/lbm [It is negative because work is being done on the compressor]
Explanation:
Complete question is as follows;
Air initially at 120 psia and 500oF is expanded by an adiabatic turbine to 15 psia and 200oF. Assuming air can be treated as an ideal gas and has variable specific heat.
a) Determine the specific work output of the actual turbine (Btu/lbm).
b) Determine the amount of specific entropy generation during the irreversible process (Btu/lbm R).
c) Determine the isentropic efficiency of this turbine (%).
d) Suppose the turbine now operates as an ideal compressor (reversible and adiabatic) where the initial pressure is 15 psia, the initial temperature is 200 oF, and the ideal exit state is 120 psia. What is the minimum specific work the compressor will be required to operate (Btu/lbm)?
solution;
Please check attachment for complete solution and step by step explanation
Answer:
D. a triangle and a T-Square
Explanation:
A T-Square is the best drawing tool to create squares. You would need a squares to create cubes.