Answer:
Explanation:
For we to calculate the shear stress on the upper plate and give its direction. Sketch the variation of shear stress across the channel, I used hand in solving it, check attached file below
Answer:
f=1.59 Hz
Explanation:
Given that
Simple undamped system means ,system does not consists any damper.If system consists damper then it is damped spring mass system.
Velocity = 100 mm/s
Maximum amplitude = 10 mm
We know that for a simple undamped system spring mass system

now by putting the values

100 = ω x 10
ω = 10 rad/s
We also know that
ω=2π f
10 = 2 x π x f
f=1.59 Hz
So the natural frequency will be f=1.59 Hz.
Answer:
i think its the last option
Explanation:
sorry its too late tho
This question is incomplete, the complete question is;
(Laminar flow) A fluid flows through two horizontal pipes of equal length which are connected together to form a pipe of length 2
. The flow is laminar and fully developed. The pressure drop for the first pipe is 1.657 times greater than it is for the second pipe. If the diameter of the first pipe is D, determine the diameter of the second pipe.
D₃ = _____D.
{ the tolerance is +/-3% }
Answer:
the diameter of the second pipe D₃ is 1.13D
Explanation:
Given the data in the question;
Length = 2
pressure drop in the first pipe is 1.657 times greater than it is for the second pipe.
Now, we know that for Laminar Flow;
V' = πD⁴ΔP / 128μL
where V'₁ = V'₂ and ΔP₁₋₂ = 1.657 ΔP₂₋₃
Hence,
V'₁ = πD⁴ΔP₁₋₂ / 128μL = V'₃ = πD₃⁴ΔP₂₋₃ / 128μL
so
D₃ = D
ΔP₁₋₂ / ΔP₂₋₃ 
we substitute
D₃ = D
1.657 
D₃ = D( 1.134568 )
D₃ = 1.13D
Therefore, the diameter of the second pipe D₃ is 1.13D
Answer:
As P is continually increased, the block will now slip, with the friction force acting on the block being: f = muK*N, where muK is the coefficient of kinetic friction, with f remaining constant thereafter as P is increased.