Answer:
R min = 28.173 ohm
R max = 1.55 ×
ohm
Explanation:
given data
capacitor = 0.227 μF
charged to 5.03 V
potential difference across the plates = 0.833 V
handled effectively = 11.5 μs to 6.33 ms
solution
we know that resistance range of the resistor is express as
V(t) =
...........1
so R will be
R =
....................2
put here value
so for t min 11.5 μs
R = 
R min = 28.173 ohm
and
for t max 6.33 ms
R max =
R max = 1.55 ×
ohm
Answer:
the maximum length of specimen before deformation is found to be 235.6 mm
Explanation:
First, we need to find the stress on the cylinder.
Stress = σ = P/A
where,
P = Load = 2000 N
A = Cross-sectional area = πd²/4 = π(0.0037 m)²/4
A = 1.0752 x 10^-5 m²
σ = 2000 N/1.0752 x 10^-5 m²
σ = 186 MPa
Now, we find the strain (∈):
Elastic Modulus = Stress / Strain
E = σ / ∈
∈ = σ / E
∈ = 186 x 10^6 Pa/107 x 10^9 Pa
∈ = 1.74 x 10^-3 mm/mm
Now, we find the original length.
∈ = Elongation/Original Length
Original Length = Elongation/∈
Original Length = 0.41 mm/1.74 x 10^-3
<u>Original Length = 235.6 mm</u>
Answer:
Explanation:adrive with visual acutity of 20/30 can just decipher asing adistance 20ft from asing determine the maximum destance from the sing which drivers with the flowing visual acuities will able to see the same sing 20/15 20/50
Answer: The electric field decreases because of the insertion of the Teflon.
Explanation:
If the charge on the capacitor is held fixed, the electric field as a consequence of this charge distribution (directed from the positive charged plate to the negative charged one remains unchanged.
However, as the Teflon is a dielectric material, even though doesn't allow the free movement of the electrons as an answer to an applied electric field, it allows that the electrons be displaced from the equilibrium position, leaving a local negative-charged zone close to the posiitive plate of the capacitor, and an equal but opposite charged layer close to the negative plate.
In this way, a internal electric field is created, that opposes to the external one due to the capacitor, which overall effect is diminishing the total electric field, reducing the voltage between the plates, and increasing the capacitance proportionally to the dielectric constant of the Teflon.