The degree of the polynomial function f is the number of zeros function f has.
The remaining zeros of the polynomial function are -i, 4 + i and 2 - i
<h3>How to determine the remaining zeros</h3>
The degrees of the polynomial is given as;
Degree = 6
The zeros are given as:
i, 4-i,2+i
The above numbers are complex numbers.
This means that, their conjugates are also zeros of the polynomial
Their conjugates are -i, 4 + i and 2 - i
Hence, the remaining zeros of the polynomial function are -i, 4 + i and 2 - i
Read more about polynomials at:
brainly.com/question/4142886
Answer:
8 1/2 cups
Step-by-step explanation:
12 3/4 divided by 3= 4 1/4 times 2 = 8 2/4 = 8 1/2
Answer:
7.03 if your rounding to the nearest tenth then its 7
Step-by-step explanation:
Answer:
18.36
Step-by-step explanation:
Answer:
<u>The original three-digit number is 417</u>
Step-by-step explanation:
Let's find out the solution to this problem, this way:
x = the two digits that are not 7
Original number = 10x+7
The value of the shifted number = 700 + x
Difference between the shifted number and the original number = 324
Therefore, we have:
324 = (700 + x) - (10x + 7)
324 = 700 + x - 10x - 7
9x = 693 - 324 (Like terms)
9x = 369
x = 369/9
x = 41
<u>The original three-digit number is 417</u>